Storage
Every experience we have changes our brains. That may seem like a bold, even strange, claim at first, but it’s true. We encode each of our experiences within the structures of the nervous system, making new impressions in the process—and each of those impressions involves changes in the brain. Psychologists (and neurobiologists) say that experiences leave memory traces, or engrams (the two terms are synonyms). Memories have to be stored somewhere in the brain, so in order to do so, the brain biochemically alters itself and its neural tissue. Just like you might write yourself a note to remind you of something, the brain “writes” a memory trace, changing its own physical composition to do so. The basic idea is that events (occurrences in our environment) create engrams through a process of consolidation: the neural changes that occur after learning to create the memory trace of an experience. Although neurobiologists are concerned with exactly what neural processes change when memories are created, for psychologists, the term memory trace simply refers to the physical change in the nervous system (whatever that may be, exactly) that represents our experience.
Memory traces, or engrams, are NOT perfectly preserved recordings of past experiences. The traces are combined with current knowledge to reconstruct what we think happened in the past. [Simon Bierdwald, https://goo.gl/JDhdCE, CC BY-NC-SA 2.0, https://goo.gl/jSSrcO]
Although the concept of engram or memory trace is extremely useful, we shouldn’t take the term too literally. It is important to understand that memory traces are not perfect little packets of information that lie dormant in the brain, waiting to be called forward to give an accurate report of past experience. Memory traces are not like video or audio recordings, capturing experience with great accuracy; as discussed earlier, we often have errors in our memory, which would not exist if memory traces were perfect packets of information. Thus, it is wrong to think that remembering involves simply “reading out” a faithful record of past experience. Rather, when we remember past events, we reconstruct them with the aid of our memory traces—but also with our current belief of what happened. For example, if you were trying to recall for the police who started a fight at a bar, you may not have a memory trace of who pushed whom first. However, let’s say you remember that one of the guys held the door open for you. When thinking back to the start of the fight, this knowledge (of how one guy was friendly to you) may unconsciously influence your memory of what happened in favor of the nice guy. Thus, memory is a construction of what you actually recall and what you believe happened. In a phrase, remembering is reconstructive (we reconstruct our past with the aid of memory traces) not reproductive (a perfect reproduction or recreation of the past).
Psychologists refer to the time between learning and testing as the retention interval. Memories can consolidate during that time, aiding retention. However, experiences can also occur that undermine the memory. For example, think of what you had for lunch yesterday —a pretty easy task.
However, if you had to recall what you had for lunch 17 days ago, you may well fail (assuming you don’t eat the same thing every day). The 16 lunches you’ve had since that one have created retroactive interference. Retroactive interference refers to new activities (i.e., the subsequent lunches) during the retention interval (i.e., the time between the lunch 17 days ago and now) that interfere with retrieving the specific, older memory (i.e., the lunch details from 17 days ago). But just as newer things can interfere with remembering older things, so can the opposite happen. Proactive interference is when past memories interfere with the encoding of new ones. For example, if you have ever studied a second language, often times the grammar and vocabulary of your native language will pop into your head, impairing your fluency in the foreign language.
Retroactive interference is one of the main causes of forgetting (McGeoch, 1932). In the module Eyewitness Testimony and Memory Biases http://noba.to/uy49tm37 Elizabeth Loftus describes her fascinating work on eyewitness memory, in which she shows how memory for an event can be changed via misinformation supplied during the retention interval. For example, if you witnessed a car crash but subsequently heard people describing it from their own perspective, this new information may interfere with or disrupt your own personal recollection of the crash. In fact, you may even come to remember the event happening exactly as the others described it! This misinformation effect in eyewitness memory represents a type of retroactive interference that can occur during the retention interval (see Loftus [2005] for a review). Of course, if correct information is given during the retention interval, the witness’s memory will usually be improved.
Although interference may arise between the occurrence of an event and the attempt to recall it, the effect itself is always expressed when we retrieve memories, the topic to which we turn next.