Encoding Activities

What we do when we’re learning is very important. We’ve all had the experience of reading something and suddenly coming to the realization that we don’t remember a single thing, even the sentence that we just read. How we go about encoding information determines a lot about how much we remember.

You might think that the most important thing is to try to learn. Interestingly, this is not true, at least not completely. Trying to learn a list of words, as compared to just evaluating each word for its part of speech (i.e., noun, verb, adjective) does help you recall the words—that is, it helps you remember and write down more of the words later. But it actually impairs your ability to recognize the words—to judge on a later list which words are the ones that you studied (Eagle & Leiter, 1964). So this is a case in which incidental learning—that is, learning without the intention to learn—is better than intentional learning.

Such examples are not particularly rare and are not limited to recognition. Nairne, Pandeirada, and Thompson (2008) showed, for example, that survival processing—thinking about and rating each word in a list for its relevance in a survival scenario—led to much higher recall than intentional learning (and also higher, in fact, than other encoding activities that are also known to lead to high levels of recall). Clearly, merely intending to learn something is not enough. How a learner actively processes the material plays a large role; for example, reading words and evaluating their meaning leads to better learning than reading them and evaluating the way that the words look or sound (Craik & Lockhart, 1972). These results suggest that individual differences in motivation will not have a large effect on learning unless learners also have accurate ideas about how to effectively learn material when they care to do so.

So, do learners know how to effectively encode material? People allowed to freely allocate their time to study a list of words do remember those words better than a group that doesn’t have control over their own study time, though the advantage is relatively small and is limited to the subset of learners who choose to spend more time on the more difficult material (Tullis & Benjamin, 2011).

Motivation to learn doesn’t make much of a difference unless learners use effective strategies for encoding the information they want to retain. Although they’re not flashy, methods like spaced practice, interleaving, and frequent testing are among the most effective ways to apply your efforts. [Image: Cali4beach, https://goo.gl/twjIVg, CC BY 2.0, https://goo.gl/BRvSA7]

In addition, learners who have an opportunity to review materials that they select for restudy often learn more than another group that is asked to restudy the materials that they didn’t select for restudy (Kornell & Metcalfe, 2006). However, this advantage also appears to be relatively modest (Kimball, Smith, & Muntean, 2012) and wasn’t apparent in a group of older learners (Tullis & Benjamin, 2012). Taken together, all of the evidence seems to support the claim that self-control of learning can be effective, but only when learners have good ideas about what an effective learning strategy is.

One factor that appears to have a big effect and that learners do not always appear to understand is the effect of scheduling repetitions of study. If you are studying for a final exam next week and plan to spend a total of five hours, what is the best way to distribute your study? The evidence is clear that spacing one’s repetitions apart in time is superior than massing them all together (Baddeley & Longman, 1978; Bahrick, Bahrick, Bahrick, & Bahrick, 1993; Melton, 1967). Increasing the spacing between consecutive presentations appears to benefit learning yet further (Landauer & Bjork, 1978).

A similar advantage is evident for the practice of interleaving multiple skills to be learned: For example, baseball batters improved more when they faced a mix of different types of pitches than when they faced the same pitches blocked by type (Hall, Domingues, & Cavazos, 1994).

Students also showed better performance on a test when different types of mathematics problems were interleaved rather than blocked during learning (Taylor & Rohrer, 2010).

One final factor that merits discussion is the role of testing. Educators and students often think about testing as a way of assessing knowledge, and this is indeed an important use of tests. But tests themselves affect memory, because retrieval is one of the most powerful ways of enhancing learning (Roediger & Butler, 2013). Self-testing is an underutilized and potent means of making learning more durable.


Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Encoding Activities by Philip Smith is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book