Learners

People bring numerous individual differences with them into memory experiments, and many of these variables affect learning. In the classroom, motivation matters (Pintrich, 2003), though experimental attempts to induce motivation with money yield only modest benefits (Heyer & O’Kelly, 1949). Learners are, however, quite able to allocate more effort to learning prioritized over unimportant materials (Castel, Benjamin, Craik, & Watkins, 2002).

In addition, the organization and planning skills that a learner exhibits matter a lot (Garavalia & Gredler, 2002), suggesting that the efficiency with which one organizes self-guided learning is an important component of learning. We will return to this topic soon.

One well-studied and important variable is working memory capacity. Working memory describes the form of memory we use to hold onto information temporarily. Working memory is used, for example, to keep track of where we are in the course of a complicated math problem, and what the relevant outcomes of prior steps in that problem are. Higher scores on working memory measures are predictive of better reasoning skills (Kyllonen & Christal, 1990), reading comprehension (Daneman & Carpenter, 1980), and even better control of attention (Kane, Conway, Hambrick, & Engle, 2008).

Anxiety also affects the quality of learning. For example, people with math anxiety have a smaller capacity for remembering math-related information in working memory, such as the results of carrying a digit in arithmetic (Ashcraft & Kirk, 2001). Having students write about their specific anxiety seems to reduce the worry associated with tests and increases performance on math tests (Ramirez & Beilock, 2011).

 

image

Research attests that we can hold between 5 and 9 individual pieces of information in our working memory at once. This is partly why in the 1950s Bell Labs developed a 7-digit phone number system. [Image: Diamondmagna, https://goo.gl/xeUxfw, CC BY-SA 3.0, https://goo.gl/eLCn2O]

One good place to end this discussion is to consider the role of expertise. Though there probably is a finite capacity on our ability to store information (Landauer, 1986), in practice, this concept is misleading. In fact, because the usual bottleneck to remembering something is our ability to access information, not our space to store it, having more knowledge or expertise actually enhances our ability to learn new information. A classic example can be seen in comparing a chess master with a chess novice on their ability to learn and remember the positions of pieces on a chessboard (Chase & Simon, 1973). In that experiment, the master remembered the location of many more pieces than the novice, even after only a very short glance. Maybe chess masters are just smarter than the average chess beginner, and have better memory? No: The advantage the expert exhibited only was apparent when the pieces were arranged in a plausible format for an ongoing chess game; when the pieces were placed randomly, both groups did equivalently poorly. Expertise allowed the master to chunk (Simon, 1974) multiple pieces into a smaller number of pieces of information—but only when that information was structured in such a way so as to allow the application of that expertise.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Learners Copyright © by Philip Smith is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book