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Welcome! This book is an introduction to engineering mechanics:

statics, when acceleration is 0. Hopefully, this course will help you

to see statics everywhere in the world – because it truly is

everywhere! Concepts include:

• particles and rigid body equilibrium equations,

• free-body diagrams,

• distributed loads,

• shear and moment diagrams,

• trusses, method of joints and sections, &

• inertia.

This is the first of two courses to describe how objects move and

the forces that cause motion. This combines math and physics

fundamentals with real-world application. A structured problem-

solving process is included, and by the end of the book, you should

be able to recognize and describe motion all around you in your

everyday life.

Chapter 1 contains the fundamental math and physics concepts

including vectors, Pythagorean theorem, sine and cosine laws, dot

product, Newton’s laws, weight and mass, unit conversions, and the

problem solving process.

Chapter 2 explains the difference between particles and rigid

bodies and introduces free-body diagrams and equilibrium

equations for particles.

Chapter 3 contains introductory rigid body concepts, including

cross products, the right hand rule, torques/moments and couples,

distributed loads and reaction/support forces.

Chapter 4 introduces free-body diagrams and equilibrium

equations for rigid bodies, as well as external forces, frictional and

impending motion.

Chapter 5 introduces trusses and two methods to solve truss

systems: method of joints and method of sections.
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Chapter 6 explains internal forces and breaks down shear/

moment diagrams.

Chapter 7 introduces center of mass, mass moment of inertia,

area moment of inertia, and the parallel axis theorem.

Appendix A has a reference list of open textbooks.

This book is a combination of many other open

educational resources (OER) under similar creative

commons licenses. This information is denoted inside a

box like this. The links to the original source are very

clearly included so you can go to those books to see

what they say on other topics and try out their sample

problems.

Key Takeaways

Most sections have a ‘key takeaway’ that includes text

from me (Libby), containing the most important part of the

section (Basically), where it occurs in the real world

(Application), and what part of this course it connects to –

the why are we learning this (Looking ahead).

The last section of each chapter includes examples that were

submitted by former ENGN 1230 statics students to help you learn.

Statics and most engineering courses are ‘team sports’. I

recommend finding a few study partners to struggle through the

homework and study for the tests together.

This book is a good start to helping you learn, but ultimately

it’s up to you. Complete every homework and go to every class.

2 | Statics



But that’s not enough. Look at the solutions that are posted and

practice. You’ll get out of it what you put in, and statics can be fun.

It’s how engineers apply physics concepts to the real world. I hope

you learn to love learning engineering as much as I enjoy teaching

it. Hopefully, you’ll get a sense of the wonder of engineering through

this book.

Book cover image by malinoh from Pixabay
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CHAPTER 1:
FUNDAMENTAL CONCEPTS

Static vs Dynamic Motion
Before we start, what is the difference between static and

dynamic? Static problems are all problems where there is no

acceleration. As you’re driving down the road and you’re cruising

along at a constant velocity, that is a static problem. As soon as you

start to slow down for a stop light or speed up, you are in dynamic

motion, and that’s much more complicated. For this course, we

will only consider problems where there is no motion (such as the

‘static’ is used in the English language), or constant velocity. Be

prepared to give many examples of static versus dynamic, because

before you can solve a problem, you have to know what type of

problem it is!

Introduction to Chapter 1: Fundamental Concepts
This chapter has a lot of concepts from math and physics that

are necessary for you to understand before we can apply them in

engineering contexts. It’s kind of like: before you can write an essay

to express your opinion, you need to know how to write the a,

b, c’s and what each word means. Here, you need to know how

to compute a cross product before you can calculate how much

Torque is created from a force.

Some of this might be new. Some of this might be familiar, but we

might be applying it in a different way. (Such as calculating torque –

this is not what you learned in high school physics!) Some of it might

feel new, so practice practice practice!

Here are the sections in this Chapter:

• 1.1 Math & Physics Important Concepts (Mass, Weight, Slugs,

Trig, Units, Conversions, Scalar, Vector, Newton’s Laws)

• 1.2 XYZ Coordinate Frame

• 1.3 Vectors
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• 1.4 Dot Product

• 1.5 Cross Products

• 1.6 Torque/Moment

• 1.7 Problem Solving Process

• 1.8 Student examples

Here are the key equations and concepts you will learn in this

chapter

6 | Statics



1.1 Preparatory Concepts

1.1.1 Scalar vs. Vector

Many familiar physical quantities can be specified

completely by giving a single number and the

appropriate unit. For example, “a class period lasts 50

min” or “the gas tank in my car holds 65 L” or “the

distance between two posts is 100 m.” A physical

quantity that can be specified completely in this manner

is called a scalar quantity. Scalar is a synonym of

“number.” Time, mass, distance, length, volume,

temperature, and energy are examples

of scalar quantities.

Scalar quantities that have the same physical units can

be added or subtracted according to the usual rules of

algebra for numbers. For example, a class ending 10 min

earlier than 50 min lasts (50 min – 10 min) = 40 min.

Similarly, a 60-cal serving of corn followed by a 200-cal

serving of donuts gives (60 cal + 200 cal) = 260 cal of

energy. When we multiply a scalar quantity by a

number, we obtain the same scalar quantity but with a

larger (or smaller) value. For example, if yesterday’s

breakfast had 200 cal of energy and today’s breakfast

has four times as much energy as it had yesterday, then

today’s breakfast has 4(200 cal) = 800 cal of energy. Two

scalar quantities can also be multiplied or divided by
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each other to form a derived scalar quantity. For

example, if a train covers a distance of 100 km in 1.0 h,

its speed is 100.0 km/1.0 h = 27.8 m/s, where the speed

is a derived scalar quantity obtained by dividing distance

by time.

Many physical quantities, however, cannot be

described completely by just a single number of physical

units. For example, when the U.S. Coast Guard

dispatches a ship or a helicopter for a rescue mission,

the rescue team must know not only the distance to the

distress signal, but also the direction from which the

signal is coming so they can get to its origin as quickly

as possible. Physical quantities specified completely by

giving a number of units (magnitude) and a direction are

called vector quantities. Examples of vector quantities

include displacement, velocity, position, force, and

torque. In the language of mathematics, physical vector

quantities are represented by mathematical objects

called vectors. We can add or subtract two vectors, and

we can multiply a vector by a scalar or by another

vector, but we cannot divide by a vector. The operation

of division by a vector is not defined.

8 | Statics



Source: University Physics Volume 1, OpenStax CNX

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-1-scalars-and-vectors

Key Takeaways

Basically: a scalar has only magnitude, whereas a vector

has magnitude and direction.

Application: I might have gone for a 4 km walk (scalar) but

whether I walked in a straight line, took turns, or went 2 km

out and turned around to walk 2 km back would tell me a

lot more information (vector).

Looking ahead: We will talk about this again in sections 1.3

on vectors and in section 1.4 and 1.5 on dot products and

cross products.

1.1.2 Newton’s Laws

1st Law:
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Newton’s first law states that: “A body at rest will
remain at rest unless acted on by an unbalanced force.
A body in motion continues in motion with the same
speed and in the same direction unless acted upon by
an unbalanced force.”

This law, also sometimes called the “law of inertia”,

means that bodies maintain their current velocity unless

a force is applied to change that velocity. If an object is

at rest with zero velocity it will remain at rest until some

force begins to change that velocity, and if an object is

moving at a set speed and in a set direction it will

remain at that same velocity until some force begins to

change that velocity.

Net Forces: It is important to note that the net
force is what will cause a change in velocity. The net

force is the sum of all forces acting on the body. For

example, we can imagine gently pushing on the rock in

the figure above and observing that the rock does not

move. This is because we will have a friction force equal

in magnitude and opposite in direction opposing our

gentle pushing force. The sum of these two forces will

be equal to zero, therefore the net force is zero and the

change in velocity is zero.

Rotational Motion: Newton’s first law also applies to

moments and rotational velocities. A body will maintain

it’s current rotational velocity until a net moment is

exerted to change that rotational velocity. This can be

seen in things like toy tops, flywheels, stationary bikes,

and other objects that will continue spinning once

started until brakes or friction stop them.
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Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/newtons_first_law/firstlaw.html

2nd Law:

Newton’s second law states that: “When a net force
acts on any body with mass, it produces an
acceleration of that body. The net force will be equal to
the mass of the body times the acceleration of the
body”

You will notice that the force and the acceleration in

the equation above have an arrow above them. This

means that they are vector quantities, having both a

magnitude and a direction. Mass on the other hand is a

scalar quantity having only a magnitude. Based on the

above equation, you can infer that the magnitude of the

net force acting on the body will be equal to the mass of

the body times the magnitude of the acceleration, and

that the direction of the net force on the body will be

equal to the direction of the acceleration of the body.
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Rotational Motion: Newton’s second law also applies

to moments and rotational velocities. The revised

version of the second law equation states that the net

moment acting on the object will be equal to the mass

moment of inertia of the body about the axis of rotation

(I) times the angular acceleration of the body.

You should again notice that the moment and the

angular acceleration of the body have arrows above

them, indicating that they are vector quantities with

both a magnitude and direction. The mass moment of

inertia on the other hand is a scalar quantity having only

a magnitude. The magnitude of the net moment will be

equal to the mass moment of inertia times the

magnitude of the angular acceleration, and the direction

of the net moment will be equal to the direction of the

angular acceleration.

Source: Engineering Mechanics, Jacob Moore et

al., http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/newtons_second_law/

secondlaw.html

3rd Law:

Newton’s Third Law states “For any action, there is
an equal and opposite reaction.” By “action” Newton

meant a force, so for every force one body exerts on

another body, that second body exerts a force of equal

magnitude but opposite direction back on the first body.
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Since all forces are exerted by bodies (either directly or

indirectly), all forces come in pairs, one acting on each

of the bodies interacting.

Though there may be two equal and opposite forces

acting on a single body, it is important to remember that

for each of the forces a Third Law pair acts on a

separate body. This can sometimes be confusing when

there are multiple Third Law pairs at work. Below are

some examples of situations where multiple Third Law

pairs occur.

Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/newtons_third_law/

thirdlaw.html
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Key Takeaways

Basically: These 3 laws form the foundation of statics and

dynamics. It makes our problems interesting! In statics, we

don’t do a lot with rotation.

• 1st law: the motion of an object won’t change unless

there is a force to cause the change.

• 2nd law: Combination of all forces = mass *

acceleration

• 3rd law: A system of interacting objects can be split

up into parts, where forces are used to model the

other part. Forces are equal (same size) and opposite

(their directions cancel out – one up, one down

Application: 1st law: a rock rolling down the hill will keep

going unless it hits a tree. 2nd law: the amount of forces on

the rock and how massive (heavy) it is will determine how

much it is accelerating (or decelerating). 3rd law: the rock is

pushing on the ground with the same amount of force as

the ground is pushing on the rock, but in the opposite

direction.

Looking ahead: You’ll see these concepts again in Ch 7 on

Inertia (1st law), Section 2.3 and 4.3 on equillibrium

equations (2nd law), Section 4.2 on system free-body

diagrams (3rd law).
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1.1.3 Units

Giving numerical values for physical quantities and

equations for physical principles allows us to

understand nature much more deeply than qualitative

descriptions alone. To comprehend these vast ranges,

we must also have accepted units in which to express

them. We shall find that even in the potentially

mundane discussion of meters, kilograms, and seconds,

a profound simplicity of nature appears: all physical

quantities can be expressed as combinations of only

seven base physical quantities.

We define a physical quantity either by specifying

how it is measured or by stating how it is calculated

from other measurements. For example, we might

define distance and time by specifying methods for

measuring them, such as using a meter stick and a

stopwatch. Then, we could define average speed by

stating that it is calculated as the total distance traveled

divided by time of travel.

Measurements of physical quantities are expressed in

terms of units, which are standardized values. For

example, the length of a race, which is a physical

quantity, can be expressed in units of meters (for

sprinters) or kilometers (for distance runners). Without

standardized units, it would be extremely difficult for

scientists to express and compare measured values in a

meaningful way.

Two major systems of units are used in the world: SI
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units (for the French Système International d’Unités),

also known as the metric system, and English units (also

known as the customary or imperial system). English

units were historically used in nations once ruled by the

British Empire and are still widely used in the United

States. English units may also be referred to as

the foot–pound–second (fps) system, as opposed to

the centimeter–gram–second (cgs) system.

SI Units: Base and Derived Units

In any system of units, the units for some physical

quantities must be defined through a measurement

process. These are called the base quantities for that

system and their units are the system’s base units. All

other physical quantities can then be expressed as

algebraic combinations of the base quantities. Each of

these physical quantities is then known as a derived
quantity and each unit is called a derived unit. The

choice of base quantities is somewhat arbitrary, as long

as they are independent of each other and all other

quantities can be derived from them. Typically, the goal

is to choose physical quantities that can be measured

accurately to a high precision as the base quantities.

The reason for this is simple. Since the derived
units can be expressed as algebraic combinations of the

base units, they can only be as accurate and precise as

the base units from which they are derived.

Based on such considerations, the International

Standards Organization recommends using seven base

quantities, which form the International System of

Quantities (ISQ). These are the base quantities used to
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define the SI base units. The following table lists these

seven ISQ base quantities and the corresponding SI base

units.

ISQ Base
Quantity

SI
Base
Unit

Length Meter
(m)

Mass Kilogr
am (kg)

Time Secon
d (s)

Electrical
current

Ampe
re (A)

Thermodyna
mic temp.

Kelvin
(K)

Amount of
substance

Mole
(mol)

Luminous
intensity

Cande
la (cd)

You are probably already familiar with some derived

quantities that can be formed from the base quantities.

For example, the geometric concept of area is always

calculated as the product of two lengths. Thus, area is a

derived quantity that can be expressed in terms of SI

base units using square meters (m x m = m2(m×m=m2)."

role="presentation" style="font-family: proxima-nova,

sans-serif;padding: 1px 0px;margin: 0px;font-size:

17.44px;vertical-align: baseline;background:

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-
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weight: 400;letter-spacing: normal;float: none;direction:

ltr;max-width: none;max-height: none;min-width:

0px;min-height: 0px;color: #373d3f">).

Similarly, volume is a derived quantity that can be

expressed in cubic meters (m3). Speed is length per

time; so in terms of SI base units, we could measure it in

meters per second (m/s). Volume mass density (or just

density) is mass per volume, which is expressed in terms

of SI base units such as kilograms per cubic meter

(kg/m3). Angles can also be thought of as derived

quantities because they can be defined as the ratio of

the arc length subtended by two radii of a circle to the

radius of the circle. This is how the radian is defined.

Depending on your background and interests, you may

be able to come up with other derived quantities, such

as the mass flow rate (kg/s) or volume flow rate (m3/s)

of a fluid, electric charge (A·s), mass flux density

[kg/(m2·s),[kg/(m2·s)]," role="presentation" style="font-

family: proxima-nova, sans-serif;padding: 1px

0px;margin: 0px;font-size: 17.44px;vertical-align:

baseline;background: #ffffff;border: 0px;line-height:

0;text-indent: 0px;text-align: left;text-transform:

none;font-style: normal;font-weight: 400;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color:

#373d3f"> and so on. We will see many more examples

throughout this text. For now, the point is that every

physical quantity can be derived from the seven base

quantities, and the units of every physical quantity can

be derived from the seven SI base units.

Source: University Physics Volume 1, OpenStax CNX,
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https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/1-2-units-and-standards/

While most Canadian companies use SI, much manufacturing still

uses English units, so it’s important for you to be familiar with them.

What is a big number in feet? What is small? It’s important to know.

The most important advice is to stay in one unit system. So if you

are doing a homework problem that has a mixture, convert to one

system to be consistent. Challenge your self to try the one you aren’t

comfortable with. Here is a table of the most common quantities

that we’ll use in this class:

Quantity SI Unit English

Length
m (meter), km
(kilometer), mm
(milimeter)

ft (foot), mi (mile), in
(inch)

Mass kg (kilogram) slug

Force N (Newton) lb (pound)

Pressure Pa (Pascal) = N/m2
psi (pound per
square inch) = lb/
in2

Very helpful additional information about units is at this webpage:

https://www.physics.nist.gov/cuu/Units/index.html

Key Takeaways
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Basically: Units give us a standard so we canuse the same

language to describe a concept.

Application: In 1999, after taking 286 days for NASA Mars

Orbiter satellite to get to Mars, a conversion error between

N and lb caused the $125 million satellite to be lost, forever.

Click here for more fun conversion error stories. If you

want to design ANYTHING, you need to be sure everyone

involved is using the same unit system.

Looking Ahead: The next section (1.1.4) will look at

converting the units back and forth between the two

systems.

1.1.4 Measurement Conversions

It is often necessary to convert from one unit to

another. For example, if you are reading a European

cookbook, some quantities may be expressed in units of

liters and you need to convert them to cups. Or perhaps

you are reading walking directions from one location to

another and you are interested in how many miles you

will be walking. In this case, you may need to convert

units of feet or meters to miles.

Let’s consider a simple example of how to convert

units. Suppose we want to convert 80 m to kilometers.
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The first thing to do is to list the units you have and the

units to which you want to convert. In this case, we have

units in meters and we want to convert to kilometers.

Next, we need to determine a conversion factor relating

meters to kilometers. A conversion factor is a ratio that

expresses how many of one unit are equal to another

unit. For example, there are 12 in. in 1 ft, 1609 m in 1 mi,

100 cm in 1 m, 60 s in 1 min, and so on. In this case, we

know that there are 1000 m in 1 km. Now we can set up

our unit conversion. We write the units we have and

then multiply them by the conversion factor so the units

cancel out, as shown:

[latex]80 m\times\frac{1 km}{1000 m}=0.080

km[/latex]

Note that the unwanted meter unit cancels, leaving

only the desired kilometer unit. You can use this method

to convert between any type of unit. Now, the

conversion of 80 m to kilometers is simply the use of a

metric prefix, as we saw in the preceding section, so we

can get the same answer just as easily by noting that

[latex]80m=8.0\times10^1m=8.0\

times10^{-2}km=0.080km [/latex]

[latex]80m=8.0\times10^1m=8.0\

times10^{-2}km=0.080km [/latex]

since “kilo-” means 103 and 1=−2+3."

role="presentation" style="font-family: proxima-nova,

sans-serif;padding: 1px 0px;margin: 0px;font-size:

17.44px;vertical-align: baseline;background:

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-
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weight: 400;letter-spacing: normal;float: none;direction:

ltr;max-width: none;max-height: none;min-width:

0px;min-height: 0px;color: #373d3f">1=−2+3. However,

using conversion factors is handy when converting

between units that are not metric or when converting

between derived units, as the following examples

illustrate.

Source: University Physics Volume 1, OpenStax CNX,

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/1-3-unit-conversion/

Going back and forth between SI and English will become very

useful skill. If you can memorize km to mi, ft to m, and inches to

ft, you’ll be able to communicate better with coworkers. Here are

common conversions you’ll need for this course:

Quantity SI English Convert

Length
1 km = 1000 m

1 m = 1000 mm

1 mi = 5,280 ft

1 ft = 12 in

1 m = 3.28 ft

2.2 km = 1 mi

Mass kg slug 1 slug = 14.6 kg

Force N lb 1 lb = 4.448 N

Pressure Pa psi 1psi = 6895 Pa

All of the other units that we will encounter will be a mix of these

units (intensity w = N/m or lb/ft). One additional conversion that is

common is 1 lb = 2.2 kg, though this only works on Earth because it

is mixing kg and lb (see next section). For a full table, MechanicsMap

has a pdf available: http://mechanicsmap.psu.edu/websites/

UnitConversion.pdf
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Units outside the SI that
are accepted for use with
the SI

Name Symb
ol Value in SI units

minute (time) min 1 min = 60 s

hour h 1 h = 60 min = 3600 s

day d 1 d = 24 h = 86 400 s

degree (angle) ° 1° = ( /180) rad

minute (angle) 1 = (1/60)° = ( /10
800) rad

second (angle) 1 = (1/60) = ( /648
000) rad

liter L 1 L = 1 dm3 = 10-3 m3

metric ton (a) t 1 t = 103 kg

neper Np 1 Np = 1

bel (b) B 1 B = (1/2) ln 10 Np (c)

electronvolt (d) eV 1 eV = 1.602 18 x 10-19 J,
approximately

unified atomic
mass unit (e) u 1 u = 1.660 54 x 10-27 kg,

approximately

astronomical
unit (f) au 1 au = 149 597 870 700

m, exactly
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(a) In many countries, this unit is called
“tonne.”
(b) The bel is most commonly used with the SI
prefix deci: 1 dB = 0.1 B.
(c) Although the neper is coherent with SI units
and is accepted by the CIPM, it has not been
adopted by the General Conference on Weights
and Measures (CGPM, Conférence Générale des
Poids et Mesures) and is thus not an SI unit.
(d) The electronvolt is the kinetic energy
acquired by an electron passing through a
potential difference of 1 V in vacuum. The value
must be obtained by experiment, and is
therefore not known exactly.
(e) The unified atomic mass unit is equal to 1/12
of the mass of an unbound atom of the nuclide
12C, at rest and in its ground state. The value
must be obtained by experiment, and is
therefore not known exactly.
(f) The astronomical unit of length was
redefined by the XXVIII General Assembly
of the International Astronomical Union
(Resolution B2, 2012).

Source: https://www.physics.nist.gov/cuu/Units/

outside.html
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Key Takeaways

Basically: Different industries use different standards.

English is common in the US. SI is standard many other

places, however not generally in aerospace.

Application: In 1999, after taking 286 days for NASA Mars

Orbiter satellite to get to Mars, a conversion error between

N and lb caused the $125 million satellite to be lost, forever.

Click here for more fun conversion error stories. If you

want to design ANYTHING, you need to be sure everyone

involved is using the same unit system.

Looking Ahead: Always always always check what unit

you’re using. So many students lose points on homework

and the test because they aren’t paying attention to units.

1.1.5 Weight vs. Mass

Weight is the force exerted by gravity. While all

objects with mass exert an attractive force of gravity on
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all other objects with mass, that force is usually

negligible unless the mass of one of the objects is very

large. For an object near the surface of the Earth, we

can, to a very good degree of approximation, assume

that the only force of gravity on the object is from the

Earth. We usually label the force of gravity on an object

as Fg. All objects near the surface of the Earth will

experience a weight, as long as they have a mass. If an

object has a mass, m, and is located near the surface of

the Earth, it will experience a force (its weight) that is

given by:

[latex]\vec F_g=m\vec g[/latex]

where g is the Earth’s “gravitational field” vector and

points towards the centre of the Earth. Near the surface

of the Earth, the magnitude of the gravitational field is

approximately g = 9.81 m/s2. The gravitational field is a

measure of the strength of the force of gravity from the

Earth (it is the gravitational force per unit mass). The

magnitude of the gravitational field is weaker as you

move further from the centre of the Earth (e.g. at the

top of a mountain, or in Earth’s orbit). The gravitational

field is also different on different planets; for example,

at the surface of the moon, it is approximately gm =

1.62 m/s2 (six times less) – thus the weight of an object

is six times less at the surface of the moon (but its mass

is still the same). As we will see, the magnitude of the

gravitational field from any spherical body of mass M

(e.g a planet) is given by:

[latex]g(r)=G\frac{M}{r^2}[/latex]
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where G = 6.67 × 10−11 is Newton’s constant of gravity,

and r is the distance from the centre of the object.

Although we have not yet introduced the concept of

mass, it is worth emphasizing that mass and weight are

different (they have different dimensions). Mass is an

intrinsic property of an object, whereas weight is a force

of gravity that is exerted on that object because it has

mass and is located next to another object with mass

(e.g. the Earth). On Earth, when we measure our weight,

we usually do so by standing on a spring scale, which is

designed to measure a force by compressing a spring.

We are thus measuring mg, which can easily be related

to our mass since, on Earth, weight and mass are related

by a factor of g = 9.81 m/s2; this is usually what leads to

the confusion between mass and weight.

Source: Introductory Physics, Ryan Martin et al.,

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb page

106

In the English language, the words ‘mass’ and ‘weight’ are used

interchangeably. A person might say, “I weigh 50 kg”, but in statics

language, that’s wrong! Or more accurately, that language isn’t

precise enough for statics.
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An object’s mass is the same whether they are on the moon,

Mars, or Earth. However, their weight changes because the constant

of gravity with which that planet is pulling changes (see above

description comparing the moon and Earth).

g = 9.81 m/s2 (SI) and g = 32.2 ft/s2 (English)

[latex]\vec F_g=m\vec g[/latex]

Weight = mass * gravitational constant

Units of mass are kg (SI) or slugs (English) whereas units of

weight/force are N (SI) or lb (English). Because ‘slugs’ is such an odd,

unfamiliar unit, the graphic on the left uses real slugs to help you

remember to say “my mass is 50 kg (or 3.43 slug)” or “I weigh 490 N

(or 110 lb)”.
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While most Canadian companies use SI units, it’s important to be

familiar with English, so you should learn slugs. You don’t want to be

excluded from a conversation at your future job.

Note lbm (pound-mass) is not used in this book, though some

textbooks use it as a mass value. When lb is used, it is assumed to be

lbf (pound-force).

Key Takeaways

Basically: Mass and force are two different quantities.

Mass is in kg (SI) or slug (English) and weight is in N (SI) and

lb (English).

Application: Mass stays the same, but weight changes

from the Earth to the moon.

Looking ahead: This will become very important when we

look at forces in Section 4.1.

1.1.6 Pythagorean Theorem

Right triangle: a triangle containing a 90° angle.

Pythagorean theorem: a relation among the three sides

of a right triangle which states that the square of the
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hypotenuse is equal to the sum of the squares of the

other two sides (legs).

Using the Pythagorean theorem can find the length of

the missing side in a right triangle.

▪ c is the longest side of the triangle (hypotenuses).

▪ Other two sides (legs) of the triangle a and b can be

exchanged.

Source: Key Concepts of Intermediate Level Math,

Meizhong Wang and the College of New Caledonia,

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=d8bdc88b-5439-4652-b4bb-2948f0d5c625,

page 136.

A special cases of the right triangle is called a 3-4-5 triangle,

or a Pythagorean triple. The two short sides are 3 and 4, and the

hypotenuse is 5! Many of your homework problems will use this

coincidence so you can save on the math by remembering 3-4-5

triangles: 32 + 42 = 52, 9 + 16 = 25. Wow!
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Key Takeaways

Basically: The pythagorean theorum will help you find a

lot of information throughout this course. The longest side

c2 = a2 + b2

Application: If I have a 6 ft ladder leaned up against a wall

whose base is 2 ft from the wall, the pythagorean theorum

helps you to calculate the vertical height of the ladder (b2 =

62 – 22 ).

Looking Ahead: You’ll use this to help find geometrical

aspects of the problems, expecially when we get into

trusses in Ch 5.

1.1.7 Sine/Cosine Law’s

The Six Basic Trigonometric Functions

Trigonometric functions allow us to use angle

measures, in radians or degrees, to find the coordinates

of a point on any circle—not only on a unit circle—or to

find an angle given a point on a circle. They also define

the relationship among the sides and angles of a

triangle.
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To define the trigonometric functions, first consider

the unit circle centered at the origin and a

point P=(x,y)P=(x,y)" role="presentation" style="overflow:

initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">P=(x,y) on the unit

circle. Let θθθ" role="presentation" style="overflow:

initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px"> be an angle with an

initial side that lies along the positive xxx"

role="presentation" style="overflow: initial;font-style:

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float:

none;direction: ltr;max-width: none;max-height:

none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">-axis and with a terminal

side that is the line segment OP. We can then define the

values of the six trigonometric functions for θ θθ"

role="presentation" style="overflow: initial;font-style:

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float:

none;direction: ltr;max-width: none;max-height:

none;min-width: 0px;min-height: 0px;border:

32 | Statics



0px;padding: 0px;margin: 0px">in terms of the

coordinates x xx" role="presentation" style="overflow:

initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">and y.y.y."

role="presentation" style="overflow: initial;font-style:

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float:

none;direction: ltr;max-width: none;max-height:

none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">

Let P=(x,y) be a point on the unit circle centered at the

origin O. Let θθ" role="presentation" style="overflow:
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initial;font-style: normal;font-weight: normal;line-

height: normal;font-size: 14px;text-indent: 0px;text-

align: left;text-transform: none;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">θ be an angle with an

initial side along the positive x-axis and a terminal side

given by the line segment OP. The trigonometric

functions are then defined as

$$\sin\theta=y\;\;\;\csc\theta=\frac{1}{y}\\\cos\

theta=x\;\;\;\sec\theta=\frac{1}{x}\\\tan\

theta=\frac{y}{x}\;\;\;\cot\theta=\frac{x}{y}$$

If x=0x=0,secθx=0,secθ" role="presentation"

style="overflow: initial;font-style: normal;font-weight:

normal;line-height: normal;font-size: 14px;text-indent:

0px;text-align: left;text-transform: none;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">, secθ and tanθ are

undefined. If y=0, then cotθ and cscθ are undefined.

We can see that for a point P=(x,y) on a circle of radius

r with a corresponding angle θ,θ," role="presentation"

style="overflow: initial;font-style: normal;font-weight:

normal;line-height: normal;font-size: 14px;text-indent:
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0px;text-align: left;text-transform: none;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">θ, the coordinates x and

y satisfy:

[latex]\cos \theta =\frac {x}{r}[/latex]

[latex]x=r\cos\theta[/latex]

[latex]\sin \theta =\frac {y}{r}[/latex]

[latex]x=r\sin\theta[/latex]

The values of the other trigonometric functions can

be expressed in terms of x, y, and r:

The table below shows the values of sine and cosine at

the major angles in the first quadrant. From this table,

we can determine the values of sine and cosine at the

corresponding angles in the other quadrants. The values
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of the other trigonometric functions are calculated

easily from the values of sinθ and cosθ:

Trigonometric Identities

A trigonometric identity is an equation involving

trigonometric functions that is true for all angles θθ"

role="presentation" style="overflow: initial;font-style:

normal;font-weight: normal;line-height: normal;font-

size: 14px;text-indent: 0px;text-align: left;text-

transform: none;letter-spacing: normal;float:

none;direction: ltr;max-width: none;max-height:

none;min-width: 0px;min-height: 0px;border:

0px;padding: 0px;margin: 0px">θ for which the

functions are defined. We can use the identities to help

us solve or simplify equations. The main trigonometric

identities are listed next.
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Source: Calculus Volume 1, Gilbert Strang & Edwin

“Jed” Herman, https://openstax.org/books/calculus-

volume-1/pages/1-3-trigonometric-functions

We often refer to this as SOH-CAH-TOA:

• Sine = Opposite / Hypotenuse >> S = O/H >> SOH

• Cosine = Adjacent / Hypotenuse >> C = A / H >> CAH

• Tangent = Opposite / Adjacent >> T = O / A >> TOA
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I remember that cos is close – the side that’s close to the angle is

cosine. (It kind of rhymes and ‘close’ is a more familiar word than

‘adjacent’).

Key Takeaways

Basically: Trigonometric functions will help you to solve

problems. You’ll use SOH-CAH-TOA in many statics

problems, whether to componentize a vector or resolve a

force.

Application: A 6ft ladder leaning up against a house is at a

60 degree angle. We can find the vertical height where the

ladder reaches the house by using height = 6 ft * sin 60

degrees. (sin = opp / hyp)

Looking Ahead: Chapter 4 (forces) and Chapter 5 (trusses)

will use calculation of angles a lot.
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1.2 XYZ Coordinate Frame

We need a standard to be able to share a common language. The

Cartesian coordinate frame lets us express the location of a point so

that others can understand what we’re talking about.In this section,

we’ll look at 2d and 3d coordinate frames.

1.2.1 Cartesian Coordinate Frame in
2D

Vectors are usually described in terms of their

components in a coordinate system. Even in everyday

life we naturally invoke the concept of orthogonal

projections in a rectangular coordinate system. For

example, if you ask someone for directions to a

particular location, you will more likely be told to go 40

km east and 30 km north than 50 km in the direction

37° north of east.

In a rectangular (Cartesian) x-y coordinate system in a

plane, a point in a plane is described by a pair of

coordinates (x, y). In a similar fashion, a

vector [latex]\vec A[/latex] in a plane is described by a

pair of its vector coordinates. The x-coordinate of

vector A→" role="presentation">[latex]\vec A[/latex] is

called its x-component and the y-coordinate of

vector A→" role="presentation">[latex]\vec A[/latex] is
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called its y-component. The vector x-component is a

vector denoted by [latex]\vec A_x[/latex]. The

vector y-component is a vector denoted by [latex]\vec

A_y[/latex]. In the Cartesian system, the x and y vector
components of a vector are the orthogonal projections

of this vector onto the x– and y-axes, respectively. In

this way, following the parallelogram rule for vector

addition, each vector on a Cartesian plane can be

expressed as the vector sum of its vector components:

[latex]\vec A =\vec A_x+\vec A_y[/latex]

As illustrated in the figure below, vector [latex]\vec

A[/latex] is the diagonal of the rectangle where

the x-component [latex]\vec A_x[/latex] is the side

parallel to the x-axis and the y-component [latex]\vec

A_y[/latex] is the side parallel to the y-axis. Vector

component [latex]\vec A_x[/latex] is orthogonal to

vector component [latex]\vec A_y[/latex].
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It is customary to denote the positive direction on

the x-axis by the unit vector i and the positive direction

on the y-axis by the unit vector j. Unit vectors of the
axes, i and j, define two orthogonal directions in the

plane. As shown in the figure above, the x– and y–

components of a vector can now be written in terms of

the unit vectors of the axes:

[latex]\vec A_x = A_x\underline{\hat{i}}[/latex]

[latex]\vec A_y = A_y\underline{\hat{ j}}[/latex]

The vectors [latex]\vec A_x and \vec A_y[/latex]

defined by the figure above are the vector components of

vector [latex]\vec A[/latex] A→" role="presentation"

style="font-family: proxima-nova, sans-serif; padding:
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1px 0px; margin: 0px; font-size: 17.44px; vertical-align:

baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight:

normal; letter-spacing: normal; float: none; direction:

ltr; max-width: none; max-height: none; min-width:

0px; min-height: 0px;"> . The numbers Ax and Ay that

define the vector components above are the scalar

components of vector [latex]\vec A[/latex] A→"

role="presentation" style="font-family: proxima-nova,

sans-serif; padding: 1px 0px; margin: 0px; font-size:

17.44px; vertical-align: baseline; background:

transparent; border: 0px; line-height: 0; text-indent:

0px; text-align: left; text-transform: none; font-style:

normal; font-weight: normal; letter-spacing: normal;

float: none; direction: ltr; max-width: none; max-height:

none; min-width: 0px; min-height: 0px;">A→"

role="presentation" style="font-family: proxima-nova,

sans-serif; padding: 1px 0px; margin: 0px; font-size:

17.44px; vertical-align: baseline; background:

transparent; border: 0px; line-height: 0; text-indent:

0px; text-align: left; text-transform: none; font-style:

normal; font-weight: normal; letter-spacing: normal;

float: none; direction: ltr; max-width: none; max-height:

none; min-width: 0px; min-height: 0px;"> . Combining

the diagram above with the equations above, we

obtain the component form of a vector:

[latex]\vec A=A_x\underline{\hat {i}} + A_y\

underline{\hat { j}}[/latex]

If we know the coordinates b(xb, yb) of the origin point
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of a vector (where b stands for “beginning”) and the

coordinates e(xe, ye) of the end point of a vector

(where e stands for “end”), we can obtain the scalar

components of a vector simply by subtracting the origin

point coordinates from the end point coordinates:

[latex]A_x = x_e - x_b[/latex]

[latex]A_y = y_e - y_b[/latex]

1.2.2. Cartesian Coordinate Frame
in 3D

To specify the location of a point in space, we need

three coordinates (x, y, z), where

coordinates x and y specify locations in a plane, and

coordinate z gives a vertical position above or below the

plane. Three-dimensional space has three orthogonal

directions, so we need not two but three unit vectors to

define a three-dimensional coordinate system. In the

Cartesian coordinate system, the first two unit vectors

are the unit vector of the x-axis i and the unit vector of

the y-axis j. The third unit vector k is the direction of

the z-axis, as can be seen below. The order in which the

axes are labeled, which is the order in which the three

unit vectors appear, is important because it defines the

orientation of the coordinate system. The order x–y–z,

which is equivalent to the order i^" role="presentation"

style="font-family: proxima-nova, sans-serif; padding:

1px 0px; margin: 0px; font-size: 17.44px; vertical-align:
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baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight:

normal; letter-spacing: normal; float: none; direction:

ltr; max-width: none; max-height: none; min-width:

0px; min-height: 0px;">i-j-k, defines the standard right-

handed coordinate system (positive orientation).

In three-dimensional space, vector [latex]\vec

A[/latex] A→" role="presentation" style="font-family:

proxima-nova, sans-serif; padding: 1px 0px; margin: 0px;

font-size: 17.44px; vertical-align: baseline; background:

transparent; border: 0px; line-height: 0; text-indent:

0px; text-align: left; text-transform: none; font-style:
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normal; font-weight: normal; letter-spacing: normal;

float: none; direction: ltr; max-width: none; max-height:

none; min-width: 0px; min-height: 0px;"> has three

vector components: the x-component [latex]\vec A_x =

A_x\underline{\hat{i}}[/latex] , which is the part of

vector[latex]\vec A[/latex] A→" role="presentation"

style="font-family: proxima-nova, sans-serif; padding:

1px 0px; margin: 0px; font-size: 17.44px; vertical-align:

baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight:

normal; letter-spacing: normal; float: none; direction:

ltr; max-width: none; max-height: none; min-width:

0px; min-height: 0px;"> along the x-axis;

the y-component [latex]\vec A_y = A_y\

underline{\hat{ j}}[/latex] , which is the part of

[latex]\vec A[/latex] A→" role="presentation"

style="font-family: proxima-nova, sans-serif; padding:

1px 0px; margin: 0px; font-size: 17.44px; vertical-align:

baseline; background: transparent; border: 0px; line-

height: 0; text-indent: 0px; text-align: left; text-

transform: none; font-style: normal; font-weight:

normal; letter-spacing: normal; float: none; direction:

ltr; max-width: none; max-height: none; min-width:

0px; min-height: 0px;"> along the y-axis; and

the z-component [latex]\vec A_z = A_z

\underline{\hat{k}}[/latex], which is the part of the

vector along the z-axis. A vector in three-dimensional

space is the vector sum of its three vector components:
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[latex]\vec A= A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}[/latex]

If we know the coordinates of its origin b(xb, yb,

zb) and of its end e(xe, ye, ze) its scalar components are

obtained by taking their differences, and

the z-component is given by:

[latex]A_z=z_e-z_b[/latex]

Magnitude A is obtained by the following equation:

[latex]A=\sqrt

{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}[/latex]

This expression for the vector magnitude comes from

applying the Pythagorean theorem twice. As seen in the

figure below, the diagonal in the x-y plane has length

[latex]\sqrt{A_{x}^{2}+A_{y}^{2}}[/latex] and its

square adds to the square Az
2 to give A2 . Note that

when the z-component is zero, the vector lies entirely in

the x-y plane and its description is reduced to two

dimensions.
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Source: University Physics Volume 1, OpenStax CNX,

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-2-coordinate-systems-

and-components-of-a-vector/

The Cartesian coordinate frame is a right-orthogonal system. This

will matter when we start looking at the right-hand rule in section

3.1. What is means is that when you draw two of the directions (say

x and y), then z must go either up or down. We’ll get into that more,

later.

Key Takeaways
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Basically: The Cartesian coordinate frame gives us a way

to communicate the location of a point in space. In 2-d we

use [x, y] and in 3-d we also include z: [x, y, z].

Application: If I am trying to walk across the room, I can

walk in a straight line for 5 steps, or I can take 3 steps to

the right and 4 steps ahead. If I wanted to describe the

position of where I went in the Cartesian coordinate frame,

it would be [3, 4] assuming x is to the right and y is straight

ahead.

Looking ahead: This will connect with everything we do in

this class, especially with cross-products (1.5), torque (1.6),

and equilibrium equations (everywhere).
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1.3 Vectors

1.3.1 Vector Components

Some fun facts about vectors:

• The vector is denoted with a line on top or bottom: [latex]\vec

A[/latex] or A.

• There are two parts of a vector ([latex]\vec A[/latex]):

magnitude (A or |A|) and direction

([latex]\underline{\hat{a}}[/latex]): [latex]\vec A =

|\underline{A}|*\underline{\hat{a}}[/latex]

• In 2-dimensions, there are two components: x and y. In 3-d,

there are three components: x, y, and z.

• Vectors can be denoted using Cartesian form or brackets:

[latex]\vec A=A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}[/latex] or using the

bracket form horizontally: [latex]\vec A=[ A_x, A_y,

A_z[/latex] ] or vertically: [latex]\vec

A=\begin{bmatrix}A_x\\A_y,\\A_z \end{bmatrix}[/latex]

• The magnitude (A or |A|) is calculated using the Pythagorean

theorem for each component in 2d: [latex]A =

\sqrt{{A}_{x}^{2}+{A}_{y}^{2}}[/latex] and 3d: [latex]A =

\sqrt{{A}_{x}^{2}+{A}_{y}^{2}+{A}_{z}^{2}}[/latex]

• The unit vector ([latex]\underline{\hat{u}}[/latex]) represents

the direction in cartesian form

[latex]\underline{\hat{u}}=\underline{\hat{i}}+\underline{\ha

t{ j}}+\underline{\hat{k}}[/latex] or using bracket form: [

[latex]\underline{\hat{i}}, \underline{\hat{ j}},

\underline{\hat{k}}[/latex] ].

• The magnitude of the unit vector is 1 (denoted by the ‘hat’ on

top) and it is unit-less: [latex]|\underline{\hat{u}} |=
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\sqrt{{\underline{\hat{i}}}^{2}+{\underline{\hat{ j}}}^{2}+{\un

derline{\hat{k}}}^{2}} = 1[/latex]

• The unit vector can be calculated from the magnitude and

vector: [latex]\underline{\hat{a}} =\vec A/|A|[/latex]

In 2d & 3d:
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Source: University Physics Volume 1, OpenStax CNX,

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-2-coordinate-systems-

and-components-of-a-vector/
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Source: Introductory Physics, Ryan
Martin et al.,
https://openlibrary.ecampusontario.ca
/catalogue/
item/?id=4c3c2c75-0029-4c9e-967f-41
f178bebbbb p814

1.3.2 Componentizing a Vector

In 2d:

To find the components of a

vector (A) in 2 dimensions (the x

and y portions Ax and Ay), use

SOH CAH TOA:

[latex]\vec A=A_x\

underline{\hat{i}}+A_y\

underline{\hat{ j}}[/latex]

Ax = |A| cos(Θ)

Ay = |A| sin(Θ)

|A|2 = Ax
2 + Ay

2 (magnitude)

tan(Θ) = Ax / Ay (direction)

In 3d:

[latex]\vec A=A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}[/latex]

|A|2 = Ax
2 + Ay

2+ Az
2 (magnitude)

[latex]\begin{aligned} &\hat{a}=\frac{\vec A}{|\vec A|}

\end{aligned}=\frac{{A}_{x} \underline{\hat{\imath}}+A_{y}

\underline{\hat{\jmath}}+{A}_{z}

\underline{\hat{k}}}{\sqrt{\left({A}_{x}\right)^{2}+\left({A}_{y}\ri

ght)^{2}+\left({A}_{z}\right)^{2}}}[/latex]

1.3.3 Position Vector

The position vector describes the position of an object or person

from a predefined origin (a starting point, absolute 0, or some other

point), for example the point where A in the above image is point at.
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A is the position vector. You can add individual position vectors to

find the total position traveled (c = a + b), for example if someone

walks from one point on campus to another, they would rarely walk

in one straight line like c. In the image below, imagine that there

is a building in the square near where a and b meet, so the person

couldn’t take c but had to walk around. The total distance traveled

is |a| + |b|, not |c| (because |c| ≠ |a| + |b|).

Source: Introductory Physics, Ryan Martin et al.,
https://openlibrary.ecampusontario.ca/catalogue/
item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb page 821

Subtraction works the same way, but instead of going from tail to

head of the arrow, the reverse direction is taken, from head to tail.

For example, a = c – b, follow c from tail to head, then go in the

reverse direction of b from head to tail, and you end up at a.

1.3.4 Vector Math

Here’s more official language to describe vectors:
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Vectors can be added together and multiplied by

scalars. Vector addition is associative and commutative,

and vector multiplication by a sum of scalars is

distributive. Also, scalar multiplication by a sum of

vectors is distributive:

[latex]\alpha(\vec A+\vec B)=\alpha\vec A +\alpha\

vec B[/latex]

In this equation, α is any number (a scalar). For

example, a vector antiparallel to vector [latex]\vec

A=A_x\hat{i}+A_y\hat{ j}+A_z\hat{k}[/latex] can be

expressed simply by multiplying [latex]\vec A[/latex] by

the scalar α=1:

[latex]-\vec A=-A_x\hat{i}-A_y\hat{ j}-A_z\

hat{k}[/latex]

The generalization of the number zero to vector

algebra is called the null vector, denoted by [latex]\vec

0[/latex]. All components of the null vector are zero

[latex]\vec 0 = 0 \hat{i} + 0 \hat{ j} + 0 \hat{k}[/latex] ,

so the null vector has no length and no direction.

Two vectors [latex]\vec A[/latex] and [latex]\vec

B[/latex] are equal vectors if and only if their difference

is the null vector:

[latex]\vec 0=\vec A - \vec B=(A_x\

underline{\hat{i}}) + A_y\underline{\hat{ j}} + A_z\

underline{\hat{k}}) - (B_x\underline{\hat{i}} + B_y\

underline{\hat{ j}} + B_z\underline{\hat{k}})[/latex]

[latex]\space=(A_x - B_x)\underline{\hat{i}} + (A_y -

B_y)\underline{\hat{ j}} + (A_z -

B_z)\underline{\hat{k}}[/latex]
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This vector equation means we must have

simultaneously [latex]A_x-B_x=0[/latex], [latex]A_y-

B_y=0[/latex], and [latex]A_z-B_z=0[/latex]. Hence,

we can write [latex]\vec A=\vec B[/latex] if and only if

the corresponding components of vectors [latex]\vec

A[/latex] and [latex]\vec B[/latex] are equal:

[latex]\vec A =\vec B[/latex] if

[latex]\begin{bmatrix}A_x=B_x\\A_y=B_y\\A_z=B_z

\end{bmatrix}[/latex]

Two vectors are equal when their corresponding

scalar components are equal.

Resolving vectors into their scalar components (i.e.,

finding their scalar components) and expressing them

analytically in vector component form allows us to use

vector algebra to find sums or differences of many

vectors analytically (i.e., using graphical methods). For

example, to find the resultant of two vectors [latex]\vec

A[/latex] and [latex]\vec B[/latex], we simply add them

component by component, as follows:

[latex]\vec R=\vec A + \vec B=(A_x\

underline{\hat{i}}+A_y\underline{\hat{ j}}+A_z\

underline{\hat{k}})+(B_x\underline{\hat{i}}+B_y\

underline{\hat{ j}}+B_z\

underline{\hat{k}})=(A_x+B_x)\underline{\hat{i}}+(A_y

+B_y)\underline{\hat{ j}}+(A_z+B_z)\underline{\hat{k}}

[/latex]

In this way, scalar components of the resultant vector:

[latex]\vec R=(R_x\underline{\hat{i}}+R_y\

underline{\hat{ j}}+R_z\underline{\hat{k}})[/latex].
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[latex]\begin{matrix}R_x = A_x+B_x\\R_y =

A_y+B_y\\R_z = A_z+B_z\end{matrix}[/latex]

Source: University Physics Volume 1, OpenStax CNX,

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-3-algebra-of-vectors/

Key Takeaways

Basically: Vectors help describe position, forces, and

quantities. Vectors use components, magnitude, and

direction (unit vector) to do so.

Application: A hammock hangs at an angle from the wall.

When a person is in the hammock, they are pulling on the

wall with a force at an angle. This force vector could be
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componentized into x and y, using the angle and the weight

of the person to calculate it.

Looking ahead: The next place vectors will appear is in

Moments in 1.6.
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1.4 Dot Product

A dot product produces a single number to describe the product

of two vectors. If you haven’t taken linear algebra yet, this may

be a new concept. This is a form of multiplication that is used to

calculate work, unit vectors, and to find the angle between two

vectors.

[latex]\vec A\cdot \vec B=|\vec A||\vec B|\cos\theta[/latex]

A vector can be multiplied by another vector but may

not be divided by another vector. There are two kinds of

products of vectors used broadly in physics and

engineering. One kind of multiplication is a scalar

multiplication of two vectors. Taking a scalar product of

two vectors results in a number (a scalar), as its name

indicates. Scalar products are used to define work and

energy relations. For example, the work that a force (a

vector) performs on an object while causing its

displacement (a vector) is defined as a scalar product of

the force vector with the displacement vector. A quite

different kind of multiplication is a vector multiplication

of vectors. Taking a vector product of two vectors

returns as a result a vector, as its name suggests. Vector

products are used to define other derived vector

quantities. For example, in describing rotations, a vector

quantity called torque is defined as a vector product of

an applied force (a vector) and its distance from pivot to

force (a vector). It is important to distinguish between

these two kinds of vector multiplications because the
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scalar product is a scalar quantity and a vector product

is a vector quantity.

Scalar multiplication of two vectors yields a scalar

product.

Dot Product

The scalar product [latex]\vec A\cdot

\vec B[/latex] of two vectors [latex]\vec A

\text{ and } \vec B[/latex] is a number

defined by the equation:

[latex]\vec A\cdot \vec B=|\vec A||\vec B|

\cos \phi[/latex]

where ϕ is the angle between the vectors.

The scalar product is also called the dot
product because of the dot notation that

indicates it.

When the vectors are given in their vector component

forms:

$$\vec A=A_x\underline{\hat{i}}+A_y\

underline{\hat{ j}}+A_z\underline{\hat{k}}\text{ and

}\vec B=B_x\underline{\hat{i}}+B_y\

underline{\hat{ j}}+B_z\underline{\hat{k}}$$

we can compute their scalar product as follows:

$$\vec A\cdot\vec B=(A_x\underline{\hat{i}}+A_y\
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underline{\hat{ j}}+A_z\underline{\hat{k}})\cdot(B_x\

underline{\hat{i}}+B_y\underline{\hat{ j}}+B_z\

underline{\hat{k}})\\=A_xB_x\

underline{\hat{i}}\cdot\underline{\hat{i}}+A_xB_y\

underline{\hat{i}}\cdot\underline{\hat{ j}}+A_xB_z\

underline{\hat{i}}\cdot\

underline{\hat{k}}\\+A_yB_x\

underline{\hat{ j}}\cdot\underline{\hat{i}}+A_yB_y\

underline{\hat{ j}}\cdot\underline{\hat{ j}}+A_yB_z\

underline{\hat{ j}}\cdot\

underline{\hat{k}}\\+A_zB_x\

underline{\hat{k}}\cdot\underline{\hat{i}}+A_zB_y\

underline{\hat{k}}\cdot\underline{\hat{ j}}+A_zB_z\

underline{\hat{k}}\cdot\underline{\hat{k}}$$

Since scalar products of two different unit vectors of

axes give zero, and scalar products of unit vectors with

themselves give one, there are only three nonzero terms

in this expression. Thus, the scalar product simplifies to:

[latex]\vec A\cdot\vec

B=A_xB_x+A_yB_y+A_zB_z[/latex]

We can use the equation below to find the angle

between two vectors. When we divide [latex]\vec A\

cdot\vec B=|\vec A||\vec B| \cos\phi[/latex] by

[latex]|\vec A || \vec B|[/latex] , we obtain the equation

for cos(ϕ), into which we substitute the equation from

above:

$$\cos\phi=\frac{\vec A\cdot\vec B}{|\vec A||\vec

B| }=\frac{A_xB_x+A_yB_y+A_zB_z}{|\vec A||\vec B|

}$$

Angle cosϕ" role="presentation">ϕ between vectors
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[latex]\vec A \text{ and }\vec B[/latex] is obtained by

taking the inverse cosine of the expression above.

Source: University Physics Volume 1, OpenStax CNX,

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-4-products-of-vectors

(many examples at this page).

But what IS it?

The dot product is the

component of vector A along B ( |A| cos Θ ) times the magnitude (size

of B). OR, it’s the component of B on A times the magnitude of A.

Visually this can be seen in the figure.1

There is a nice mathematical proof on page 169 of Calculus-Based

Physics.

One neat thing about the dot product is that A • B = B • A

An example of a dot product is in a solar panel. To maximize

1. Source: https://en.wikipedia.org/wiki/

Dot_product#/media/File:Dot_Product.svg
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efficiency, the rays coming from the sun should be perpendicular

to the panels, that is, straight on. You could use the dot product

between a vector of the sun’s rays (yellow in the image below) and

the unit vector perpendicular to the surface (green in the image) to

calculate what portion of a ray that comes in at an angle produces

energy.

Arrows added to photo from Source: https://www.pxfuel.com/en/
free-photo-ouswv

Key Takeaways

Basically: Dot product is a method to find a number that

is a product of two vectors.
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Application: Two ropes attached to a sign are being pulled

in different directions. To find the angle between them, use

the dot product of the two vectors.

Looking ahead: We will use the dot product in Section 2.3

on particle equilibrium equations (and more in dynamics

next semester).
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1.5 Cross Products

This is a second way to calculate the product of two vectors. It

creates a third vector that is perpendicular to the plane made from

the two vectors as shown in the figure 1.

a

a×b

b×a

ϴ
||a|| ||b||n sin ϴ

b

The black

arrow is perpendicular to the grey plane made from blue and red

vectors). This is how you will find the amount of torque created from

a force, which we will do many times. Also, unlike the dot product, a

x b is a different direction than b x a.

$$ \vec A\times\vec B=\begin{bmatrix}

\underline{\hat{i}} & \underline{\hat{ j}} & \underline{\hat{k}} \\

A_x & A_y & A_z \\

B_x & B_y & B_z

\end{bmatrix} $$

1. https://commons.wikimedia.org/wiki/File:Cross-

product-with-area.svg
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[latex]\vec {\textbf{A}}\times\vec{\textbf{B}}=(A_yB_z-

A_zB_y)\underline{\hat{\textbf{i}}}+(A_zB_x-

A_xB_z)\underline{\hat{\textbf{ j}}}+(A_xB_y-A_yB_x)\underline

{\hat{\textbf{k}}}[/latex]

[latex]|\vec {\textbf{A}}\times\vec {\textbf{B}}|=|\vec A||\vec

B|\sin\theta[/latex]

The vector product of two vectors [latex]\vec A

\text{ and }\vec B[/latex] is denoted by [latex]\vec A

\text{ x }\vec B[/latex] and is often referred to as

a cross product. The vector product is a vector that has

its direction perpendicular to both vectors [latex]\vec A

\text{ and }\vec B[/latex]. In other words, vector

[latex]\vec A \text{ x }\vec B[/latex] is perpendicular to

the plane that contains vectors [latex]\vec A \text{ and

}\vec B[/latex].

Source: University Physics Volume 1, OpenStax CNX,

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/2-4-products-of-vectors/

Unit vectors allow for a straightforward calculation of

the cross product of two vectors under even the most

general circumstances, e.g. circumstances in which each

of the vectors is pointing in an arbitrary direction in a

three-dimensional space. To take advantage of the

method, we need to know the cross product of the

Cartesian coordinate axis unit vectors i, j, and k with
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each other. First off, we should note that any vector

crossed into itself gives zero. This is evident from the

equation:

[latex]|\vec A\times\vec B|=|\vec A||\vec B|\sin\

theta[/latex].

because if A and B are in the same direction, then θ =

0°, and since sin 0° = 0, we have [latex]|\vec A\times\

vec B|=0[/latex]. Regarding the unit vectors, this means

that:

$$\underline{\hat{i}}\times\

underline{\hat{i}}=0\\\underline{\hat{ j}}\times\

underline{\hat{ j}}=0\\\underline{\hat{k}}\times\

underline{\hat{k}}=0$$

Next we note that the magnitude of the cross product

of two vectors that are perpendicular to each other is

just the ordinary product of the magnitudes of the

vectors. This is also evident from the equation:

$$|\vec {A}\times\vec{B}|=|\vec A||\vec B|\sin\

theta$$

because if [latex]\vec A[/latex] is perpendicular to

[latex]\vec B[/latex] then θ = 90° and sin90° = 1 so:

$$|\vec A\times\vec B|=|\vec A||\vec B|$$

Now if A and B are unit vectors, then their magnitudes

are both 1, so, the product of their magnitudes is also 1.

Furthermore, the unit vectors i, j, and k are all

perpendicular to each other so the magnitude of the
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cross product of any one of them with any other one of

them is the product of the two magnitudes, that is, 1.

Now how about the direction? Let’s use the right hand

rule to get the direction of i×j:

[To find the direction, we use the right-hand rule which

we will cover more in section 3.1. Here is an overview].

With the fingers of the right hand pointing directly away

from the right elbow, and in the same direction as i, (the

first vector in “[latex]\underline{\hat{i}}\times\

underline{\hat{ j}}[/latex]”) to make it so that if one

were to close the fingers, they would point in the same

direction as [latex]\underline{\hat{ j}}[/latex], the palm

must be facing in the +y direction. That being the case,

the extended thumb must be pointing in the +z
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direction. Putting the magnitude (the magnitude of each

unit vector is 1) and direction (+z) information together

we see that:

• [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex]

• [latex]\underline{\hat{ j}}\times\

underline{\hat{k}}=\underline{\hat{i}}[/latex]

• [latex]\underline{\hat{k}}\times\

underline{\hat{i}}=\underline{\hat{ j}}[/latex]

• [latex]\underline{\hat{ j}}\times\

underline{\hat{i}}=-\underline{\hat{k}}[/latex]

• [latex]\underline{\hat{k}}\times\

underline{\hat{ j}}=-\underline{\hat{i}}[/latex]

• [latex]\underline{\hat{i}}\times\

underline{\hat{k}}=-\underline{\hat{ j}}[/latex]

One way of remembering this is to write

[latex]\underline{\hat{i}},\underline{\hat{ j}},\underlin

e{\hat{k}}[/latex] twice in succession:

[latex]\underline{\hat{\textbf{i}}},\underline{\hat{\t

extbf{ j}}},\underline{\hat{\textbf{k}}},\underline{\hat{

\textbf{i}}},\underline{\hat{\textbf{ j}}},\underline{\hat

{\textbf{k}}}[/latex]

Then, crossing any one of the first three vectors into

the vector immediately to its right yields the next vector

to the right. But crossing any one of the last three

vectors into the vector immediately to its left yields the

negative of the next vector to the left (left-to-right “+“,

but right-to-left “−“).

Now we’re ready to look at the general case. Any
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vector [latex]\vec A[/latex] can be expressed in terms

of unit vectors:

$$\vec{\textbf{A}}=A_x\hat{\underline{i}}+A_y\

hat{\underline{ j}}+A_z\hat{\underline{k}}$$

Doing the same for a vector [latex]\vec B[/latex]

then allows us to write the cross product as:

$$\vec{\textbf{A}}\times\vec{\textbf{B}}=(A_x\

hat{\underline{i}}+A_y\hat{\underline{ j}}+A_z\

hat{\underline{k}})\times(B_x\hat{\underline{i}}+B_y\

hat{\underline{ j}}+B_z\hat{\underline{k}})$$

Using the distributive rule for multiplication we can

write this as:

$$\begin{aligned}\vec{\textbf{A}}\times\

vec{\textbf{B}}=&A_x\hat{\underline{i}}\times(B_x\

hat{\underline{i}}+B_y\hat{\underline{ j}}+B_z\

hat{\underline{k}})+\\&A_y\

hat{\underline{ j}}\times(B_x\hat{\underline{i}}+B_y\

hat{\underline{ j}}+B_z\hat{\underline{k}})+\\&A_z\

hat{\underline{k}}\times(B_x\hat{\underline{i}}+B_y\

hat{\underline{ j}}+B_z\

hat{\underline{k}})\end{aligned}$$

$$\begin{aligned}\vec{\textbf{A}}\times\

vec{\textbf{B}}=&A_x\hat{\underline{i}}\times B_x\

hat{\underline{i}}+A_x\hat{\underline{i}}\times B_y\

hat{\underline{ j}}+A_x\hat{\underline{i}}\times B_z\

hat{\underline{k}}+\\&A_y\hat{\underline{ j}}\times

B_x\hat{\underline{i}}+A_y\hat{\underline{ j}}\times

B_y\hat{\underline{ j}}+A_y\hat{\underline{ j}}\times

B_z\hat{\underline{k}}+\\&A_z\

hat{\underline{k}}\times B_x\hat{\underline{i}}+A_z\
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hat{\underline{k}}\times B_y\hat{\underline{ j}}+A_z\

hat{\underline{k}}\times B_z\

hat{\underline{k}}\end{aligned}$$

Using, in each term, the commutative rule and the

associative rule for multiplication we can write this as:

$$\begin{aligned}\vec{\textbf{A}}\times\

vec{\textbf{B}}=&A_xB_x(\hat{\underline{i}}\times\

hat{\underline{i}})+A_xB_y(\hat{\underline{i}}\times\

hat{\underline{ j}})+A_xB_z(\hat{\underline{i}}\times\

hat{\underline{k}})+\\&A_yB_x(\hat{\underline{ j}}\ti

mes\

hat{\underline{i}})+A_yB_y(\hat{\underline{ j}}\times\

hat{\underline{ j}})+A_yB_z(\hat{\underline{ j}}\times\

hat{\underline{k}})+\\&A_zB_x(\hat{\underline{k}}\ti

mes\

hat{\underline{i}})+A_zB_y(\hat{\underline{k}}\times\

hat{\underline{ j}})+A_zB_z(\hat{\underline{k}}\times\

hat{\underline{k}})\end{aligned}$$

Now we evaluate the cross product that appears in

each term:

$$\begin{aligned}\vec A\times\vec

B=&A_xB_x(0)+A_xB_y(\underline{\hat{k}})+A_xB_z(-

\underline{\hat{ j}})+\\&A_yB_x(-

\underline{\hat{k}})+A_yB_y(0)+A_yB_z(\underline{\h

at{i}})+\\&A_zB_x(\underline{\hat{ j}})+A_zB_y(-

\underline{\hat{i}})+A_zB_z(0)\end{aligned}$$

Eliminating the zero terms and grouping the terms

with i together, the terms with j together, and the terms

with k together yields:

$$\begin{aligned}\vec A\times\vec
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B=&A_yB_z(\underline{\hat{i}})+A_zB_y(-

\underline{\hat{i}})+\\&A_zB_x(\underline{\hat{ j}})+A

_xB_z(-

\underline{\hat{ j}})+\\&A_xB_y(\underline{\hat{k}})+

A_yB_x(-\underline{\hat{k}})\end{aligned}$$

Factoring out the unit vectors yields:

$$\begin{aligned}\vec A\times\vec B=&(A_yB_z-

A_zB_y)\underline{\hat{i}}+\\&(A_zB_x-

A_xB_z)\underline{\hat{ j}}+\\&(A_xB_y-

A_yB_x)\underline{\hat{k}}\end{aligned}$$

which can be written on one line as:

$$\vec A\times\vec B=(A_yB_z-

A_zB_y)\underline{\hat{i}}+(A_zB_x-

A_xB_z)\underline{\hat{ j}}+(A_xB_y-

A_yB_x)\underline{\hat{k}}$$

This is our end result. We can arrive at this result

much more quickly if we borrow a tool from that branch

of mathematics known as linear algebra (the

mathematics of matrices).

We form the 3×3 matrix:

$$ \begin{bmatrix}

\underline{\hat{i}} & \underline{\hat{ j}} &

\underline{\hat{k}} \\

A_x & A_y & A_z \\

B_x & B_y & B_z

\end{bmatrix} $$

by writing i, j, k as the first row, then the components

of the first vector that appears in the cross product as

the second row, and finally the components of the
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second vector that appears in the cross product as the

last row. It turns out that the cross product is equal to

the determinant of that matrix. We use absolute value

signs on the entire matrix to signify “the determinant of

the matrix.” So we have:

$$ \vec A\times\vec B=\begin{bmatrix}

\underline{\hat{i}} & \underline{\hat{ j}} &

\underline{\hat{k}} \\

A_x & A_y & A_z \\

B_x & B_y & B_z

\end{bmatrix} $$

To take the determinant of a 3×3 matrix you work

your way across the top row. For each element in that

row you take the product of the elements along the

diagonal that extends down and to the right, minus the

product of the elements down and to the left; and you

add the three results (one result for each element in the

top row) together. If there are no elements down and to

the appropriate side, you move over to the other side of

the matrix (see below) to complete the diagonal.

For the first element of the first row, the i, take the

product down and to the right,

72 | Statics



( this yields iAyBz) minus the product down and to the

left

( the product down-and-to-the-left is iAzBy).

For the first element in the first row, we thus have:

[latex]\underline{\hat{i}}[/latex]AyBz −

[latex]\underline{\hat{i}}[/latex]AzBy which can be

written as: (AyBz −

AzBy)[latex]\underline{\hat{i}}[/latex]. Repeating the

process for the second and third elements in the first

row (the j and the k) we get (AzBx −

AxBz)[latex]\underline{\hat{ j}}[/latex] and (AxBy −

AyBx)[latex]\underline{\hat{k}}[/latex] respectively.

Adding the three results, to form the determinant of the

matrix results in:

$$\vec A\times\vec B=(A_yB_z-

A_zB_y)\underline{\hat{i}}+(A_zB_x-

A_xB_z)\underline{\hat{ j}}+(A_xB_y-

A_yB_x)\underline{\hat{k}}$$

as we found before, “the hard way.” Below the diagram

shows the direction of each part of the cross product:
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Source: Calculus Based Physics, Jeffrey W. Schnick,

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 page

136–141

Key Takeaways

Basically: Cross product is a method to find a
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vector that is a product of two vectors, perpindular

to the plane created from the two vectors.

Application: While bicycling, the force of my foot

pushing on the pedal produces the most rotation

when the force is 90 dgrees (perpindicular) from

the surface of the pedal. The pedals themselves

rotate so I can change the angle I am pushing with,

otherwise when the pedal is at the bottom, it would

be very difficult to produce forward motion.

Looking ahead: In the next section, 1.6 on Torque,

we will use the cross product to find the moment

produced from forces.
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1.6 Torque/Moment

1.6.1 Moments

Moments are created by a force acting a distance from the center of

rotation. There are three ways to calculate moments: scalar, vector,

and using the right hand rule. The first two methods will be

presented in this section and the third way will be discussed in

section 3.1.3 on the right-hand rule.

A moment (sometimes called a torque) is defined as

the “tendency of a force to rotate a body”. Where forces

cause linear accelerations, moments cause angular
accelerations. In this way moments, can be thought of

as twisting forces.

The Vector Representation of a Moment:
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Moments, like forces, can be represented as vectors

and have a magnitude, a direction, and a “point of

application”. For moments however a better name for

the point of application is the axis of rotation. This will

be the point or axis about which we will determine all

the moments.

Magnitude:

The magnitude of a moment is the degree to which

the moment will cause angular acceleration in the body

it is acting on. It is represented by a scalar (a single

number). The magnitude of the moment can be thought

of as the strength of the twisting force exerted on the

body. When a moment is represented as a vector, the

magnitude of the moment is usually explicitly labeled.

though the length of the moment vector also often

corresponds to the relative magnitude of the moment.

The magnitude of the moment is measured in units of

force times distance. The standard metric units for the

magnitude of moments are newton meters, and the

standard English units for a moment are foot pounds.

[latex]M= F\ast d\\Metric: N\ast m\\English: lb

\ast ft[/latex] .

Direction:

In a two dimensional problem, the direction can be

thought of as a scalar quantity corresponding to the

direction of rotation the moment would cause. A

moment that would cause a counter-clockwise rotation
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is a positive moment and a moment that would cause a

clockwise rotation is a negative moment.

In a three dimensional problem however, a body can

rotate about an axis in any direction. If this is the case

we need a vector to represent the direction of the

moment. The direction of the moment vector will line

up with the axis of rotation that moment would cause,

but to determine which of the two directions we can

use along that axis we have available we use the right

hand rule. To use the right hand rule, align your right

hand as shown so that your thumb lines up with the axis

of rotation for the moment and your curled fingers

point in the direction of rotation for your moment. If

you do this, your thumb will be pointing in the direction

of the moment vector.

If we look back to two dimensional problems, all

rotations occur about an axis pointing directly into or

out of the page (the z axis). Using the right hand rule,

counter-clockwise rotations are represented by a vector
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in the positive z direction and clockwise rotations are

represented by a vector in the negative z direction.

Axis of Rotation:

In engineering statics problems we can choose any

point/axis as the axis of rotation. The choice of this

point will affect the magnitude and direction of the

resulting moment however, and the moment is only

valid about that point.

Though we can take the moment about any point in a

statics problem, if we are adding together the moments

from multiple forces, all the moments must be taken

about a common axis of rotation. Moments taken about

different points cannot be added together to find a ‘net

moment’

Additionally, if we move into the subject of dynamics,

where bodies are moving, we will want to relate

moments to angular accelerations. For this to work, we

will need to take the moments either about a single

point that does not move (such as the hinge on a door)
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or we will need to take the moments about the center of

mass of the body. Summing moments about other axes

of rotation will not result in valid calculations.

Calculating Moments:

To calculate the moment that a force exerts on a body,

we will have two main options: scalar
methods and vector methods. Scalar methods are

generally faster for two dimensional problems where a

body can only rotate clockwise or counter-clockwise,

while vector methods are generally faster for three

dimensional problems where the axis of rotation is more

complex.

Given any point on an extended body, if there is a

force acting on that body that does not travel through

that point, then that force will cause a moment about

that point. As discussed on the moments page, a

moment is a force’s tendency to cause rotation.

Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-5_moments/moments.html
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1.6.2 Scalar Method in 2 Dimensions

In discussing how to calculate the moment of a force

about a point via scalar quantities, we will begin with

the example of a force on a simple lever as shown below.

In this simple lever there is a force on the end of the

lever, distance d away from the center of rotation for

the lever (point A) where the force has a magnitude F.

When using scalar quantities, the magnitude of the

moment will be equal to the perpendicular distance

between the line of action of the force and the point we

are taking the moment about.

$$M=F\ast d$$

To determine the sign of the moment, we determine

what type of rotation the force would cause. In this case

we can see that the force would cause the lever to

rotate counterclockwise about point A.

Counterclockwise rotations are caused by positive
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moments while clockwise rotations are caused by

negative moments.

Another important factor to remember is that the

value d is the perpendicular distance from the force to

the point we are taking the moment about. We could

measure the distance from point A to the head of the

force vector, or the tail of the force vector, or really any

point along the line of action of force F. The distance we

need to use for the scalar moment calculation however

is the shortest distance between the point and the line

of action of the force. This will always be a line

perpendicular to the line of action of the force, going to

the point we are taking the moment about.
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Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/3-1_moment_scalar/

moment_scalar.html

If the position vector and force aren’t at exactly 90 degrees, the

equation T = |r| |F| sin Θ can be helpful and still produce a scalar

number for moment or torque. This is good if we had really simple

systems, such as opening a door or spinning a top. What happens

when you have a rotating door and a few people are trying to go

through it? Or a force that isn’t exactly along two axes? To solve

that, we’ll use vectors as shown in the next section.

1.6.3 Vector Method in 3 Dimensions

An alternative to calculating the moment via scalar

quantities is to use the vector method or cross product
method. For simple two dimensional problems, using

scalar quantities is usually easier, but for more complex

problems, using the cross product method is usually

easier. The cross product method for calculating

moments says that the moment vector of a force about a

point will be equal to the cross product of a

1.6 Torque/Moment | 83



vector r from the point to anywhere on the line of

action of the force and the force vector itself.

$$\vec M=\vec r\times\vec F$$

A big advantage of this method is that r does not have

to be the shortest distance between the point and the

line of action, it goes from the point to any part of the

line of action. For any problem, there are many

possible r vectors, though because of the way the cross

product works, they should all result in the same

moment vector in the end.

It is important to note here that all quantities
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(r, F and M) are vectors. Before you can solve for the

cross product, you will need to write out r and F in

vector component form. Also, even for two dimensional

problems, you will need to write out all three

components of the r and F vectors. For two dimensional

problems the z components of the r and F vectors will

simply be zero, but those values are necessary for the

calculations.

The moment vector you get will line up with the axis

of rotation for the moment, where you can use the right

hand rule to determine if the moment is going clockwise

or counterclockwise about that axis.
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Finally, it is also important to note that cross product,

unlike multiplication, is not communicative. This means

that the order of the vectors matters, and r cross F will

not be the same as F cross r. It is important to always

use r cross F when calculating moments.

Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/moment_vector/

momentvector.html
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Whether you use scalars: M = |r| |F| sinΘ or vectors: M = r x F

you can solve most moment/torque problem. The scalar method is

faster for 2-d problems, especially if the vectors are at 90 degree

angles from each other (sin 90º = 1). The vector method is more

robust, especially if there are additional angles involved. There is

the potential to make errors, so it’s recommended to use the Step

6 Review step to try multiple methods to ensure your answer is

correct.

See the examples in section 1.8 as many of them concern

moments.

Key Takeaways

Basically: There are three methods to calculate moments,

two of which were discussed here. Moments or Torque is

created by a force acting some distance from an axis of

rotation.

Application: When you are opening a heavy door, you

push on the door. If you push closer to the axis of rotation,

you’ll need a bigger force to make it move. If you push

further away from the axis (so r is bigger), the force can be

smaller to make the same motion occur.

Looking ahead: Moments apply when rigid bodies are

involved, so we’ll pick up moments again in Chapter 3.1.3,

when you’ll learn the third way to calculate moments

(torque).
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1.7 Problem Solving Process

Learning how to use a structured problem solving process will help

you to be more organized and support your future courses. Also, it

will train your brain how to approach problems. Just like basketball

players practice jump shots over and over to train their body how to

act in high pressure scenarios, if you are comfortable and familiar

with a structured problem solving process, when you’re in a high

pressure situation like a test, you can just jump into the problem like

muscle memory.

6 Step Problem Solving Method:

1. Problem

◦ Write out the answer with all necessary information that is

given to you. It feels like it takes forever, but it’s important

to have the problem and solution next to each other.

2. Draw

◦ Draw the problem, this is usually a free-body diagram

(don’t forget a coordinate frame). Eventually, as you get

further into the course, you might need a few drawings.

One would be a quick sketch of the problem in the real

world, then modelling it into a simplified engineering

drawing, and finally the free-body diagram.

3. Known and Unknowns

◦ Write out a list of the known/given values with the

variable and unit, i.e m = 14 kg (variable = number unit)
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◦ Write out a list of the unknown values that you will have to

solve for in order to solve the problem

◦ You can also add any assumptions you made here that

change the problem.

◦ Also state any constants, i.e. g = 32.2 ft/m2 or g = 9.81

m/s2

◦ This step helps you to have all of the information in one

place when you solve the problem. It’s also important

because each number should include units, so you can see

if the units match or if you need to convert some numbers

so they are all in English or SI. This also gives you the

variables side by side to ensure they are unique (so you

don’t accidentally have 2 ‘d’ variables and can rename one

with a subscript).

4. Approach

◦ Write a simple sentence or phrase explaining what

method/approach you will be using to solve the problem.

◦ For example: ‘use method of joints’, or equilibrium

equations for a rigid body, MMOI for a certain shape, etc.

◦ This is going to be more important when you get to the

later chapters and especially next semester in Dynamics

where you can solve the same problem many ways. Might

as well practice now!

5. Analysis

◦ This is the actual solving step. This is where you show all

the work you have done to solve the problem.

◦ When you get an answer, restate the variable you are

solving for, include the unit, and put a box around the

answer.

6. Review
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◦ Write a simple sentence explaining why (or why not) your

answer makes sense. Use logic and common sense for this

step.

◦ When possible, use a second quick numerical analysis to

verify your answer. This is the “gut check” to do a quick

calculation to ensure your answer is reasonable.

◦ This is the most confusing step as students often don’t

know what to put here and up just writing ‘The number

looks reasonable’. This step is vitally important to help you

learn how to think about your answer. What does that

number mean? What is it close to? For example, if you find

that x = 4000 m, that’s a very large distance! In the review,

I would say, ‘the object is 4 km long which is reasonable for

a long bridge’. See how this is compared to something

similar? Or you could do a second calculation to verify the

number is correct, such as adding up multiple parts of the

problem to confirm the total length is accurate i.e. ‘x + y +

z = total, yes it works!’

Additional notes for this course:

• It’s important to include the number and label the steps so it’s

clear what you’re doing, as shown in the example below.

• It’s okay if you make mistakes, just put a line through it and

keep going.

• Remember your header should include your name, the page

number, total number of pages, the course number, and the

assignment number. If a problem spans a number of pages, you

should include it in the header too.
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Key Takeaways

Basically: Use a 6-step structured problem solving

process: 1. Problem, 2. Draw, 3. Known & Unknown, 4.

Approach, 5. Analysis (Solve), 6. Review
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Application: In your future job there is likely a structure

for analysis reports that will be used. Each company has a

different approach, but most have a standard that should be

followed. This is good practice.

Looking ahead: This will be part of every homework

assignment.

Written by Gayla & Libby
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1.8 Examples

Here are examples from Chapter 1 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to:

eosgood@upei.ca

Example 1.8.1: Vectors, Submitted by Tyson
Ashton-Losee

1. Problem

After a long day of studying, a student

sitting at their computer moves the cursor

from the bottom left of the screen to the top

right in order to close a web browser. The

computer mouse was displaced 6 cm along

the x-axis and 3.5 cm along the y-axis. Draw

the resultant vector and calculate the

distance traveled.
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Source:
https://
www.fli
ckr.com
/
photos/
dejankr
smanov
ic/
3321820
7918
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2. Draw

3. Knowns and Unknowns

Known:

x = 6 cm

y = 3.5 cm

Unknown: r, θ

4. Approach

Use SOH CAH TOA, first find θ, then r

5. Analysis

\begin{aligned}

&\tan \theta=\frac{y}{x} \\

&\tan \theta=\frac{3.5 \mathrm{~cm}}{6

\mathrm{~cm}} \\

&\theta=\tan ^{-1}\left(\frac{35}{6}\right) \\

&\theta=30.256^{\circ} \\

&\sin \theta=\frac{y}{r} \\

&r=\frac{y}{\sin \theta} \\

&r=\frac{35 \mathrm{~cm}}{\sin

\left(30256^{\circ}\right)} \\

&r=6946 \mathrm{~cm} \\
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&r=6.9 \mathrm{~cm}

\end{aligned}

6. Review

It makes sense that the angle is less that 45, because y

is smaller than x. Also, if you use Pythagorean theorem

to find r, you get the same answer.

Example 1.8.2: Vectors, Submitted by Brian
MacDonald

1. Problem

Mark is fishing in the ocean with his

favourite fishing rod. The distance between

the tip of the rod and the reel is 8 ft and the

length of the reel handle is 0.25 ft. The angle
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between the fishing rod and fishing line is 45

degrees. If Mark catches a fish when 25 ft of

the fishing line is released while the fish is

diving down with a force of 180 N, how much

force does Mark need to apply (push down)

to the reel handle to bring in the fish? Draw

the position vector of the fish relative to the

reel.

Assumptions:

• Mark can reel in the fish when he

generates more torque with the handle

than the amount of torque that the fish

is applying to the reel while pulling on

the line.

• The fishing line comes out of the reel

in a straight line at a 90-degree angle.
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Source: https://commons.wikimedia.org/wiki/
File:Deepsea.JPG
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2. Draw

Sketch:

Free-body diagram:

3. Knowns and Unknowns
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Known:

rAB = 0.25 ft

rBC = 8 ft

rCD = 25 ft

FD = 180 N

θ = 45°

Unknown: FA , vector rAD

4. Approach

Convert inches to meters, then use the below

equation.

[latex]T=|r| *|F| * \sin \theta\\[/latex]

5. Analysis

Step 1: convert inches to meters

[latex]\begin{align} &25 \mathrm{ft} * \frac{12

\mathrm{in}}{1 \mathrm{ft}} * \frac{2.54

\mathrm{cm}}{\operatorname{l in} } *

\frac{\operatorname{l m}}{100 \mathrm{cm}}=7.62

\mathrm{m}\\\\ &\quad\mathrm{and}\\\\ &0.25

\mathrm{ft} * \frac{12 \mathrm{in}}{1\mathrm{ft}} *

\frac{2.54 \mathrm{cm}}{\operatorname{1 in} } *

\frac{\mathrm{1 m}}{100 \mathrm{cm}}=0.0762

\mathrm{m}\\ \end{align}[/latex]

Step 2: solve for TD

[latex]\begin{aligned}&T_{D}=\left|r_{C D}\right| *

\left|F_{D}\right| * \sin \theta\\ &T_{D}=(7.62 m)(180

N) \sin \left(45^{\circ}\right)\\ &T_{D}=969.86766

\mathrm{Nm} \end{aligned}[/latex]
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Step 3: Solve for FA

[latex]\begin{aligned}&T_{A}=\left|r_{AB}\right| *

\left|F_{A}\right| * \sin \theta\\ &\text { Assume }

T_{A}=T_{D}\\

&F_{A}=\frac{T_{D}}{\left|r_{AB}\right| * \sin \theta}

\\ &F_{A}=\frac{969.86766 \mathrm{ Nm}}{0.0762

\mathrm{~m} \cdot \sin \left(45^{\circ}\right)} \\

&F_{A}=17,999.998 \mathrm{N} \\ &F_{A}=18,000

\mathrm{N} \end{aligned}[/latex]

Vector rAD:

[latex]\begin{aligned} &\vec r_{A D}=\vec r_{A

B}+\vec r_{B C}+\vec r_{C D} \\ &\vec {r}_{A

D}=\left[\begin{array}{c} 0.25 \\ 0 \end{array}\right] f

t+\left[\begin{array}{l} 0 \\ 8 \end{array}\right] f

t+\left[\begin{array}{c} 25 \sin 45^{\circ} \\ -25 \cos
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45^{\circ} \end{array}\right] f t \\ &\vec r_{A

D}=\left[\begin{array}{cc} 17.93 \\ -9.68

\end{array}\right] ft \end{aligned}[/latex]

6. Review

The answer, though yielding a very large number,

appears to be correct from the information given.

18,000 N of force is the amount of force Mark would

need to apply the reel handle to generate the same

amount of force that the fish creates. 18,000 N in reality

is too much for one to generate but also in real

scenario’s one would not have to generate the same

amount of force to reel in the fish to reel gearing, the

amount of torque generated by the fishing rod itself and

etc. In other words 18 000 N of force is too high in a real

scenario but with the assumptions given in the problem,

the number seems reasonable. The answer also has the

correct unit, N.
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Example 1.8.3: Dot product and cross
product, submitted by Anonymous ENGN
1230 Student

1. Problem

$$\underline{a}=[6\;\;\;5\;\;\;3]\;\;\;\u

nderline{b}=[8\;\;\;1\;\;\;3]$$

a) Find 6b

b) Find [latex]a\cdot b[/latex]

c) Find [latex]a\times b[/latex]

d) Find [latex]2a\times b[/latex]

2. Draw

n/a

3. Knowns and Unknowns

Known: a, b

Unknowns: a) 6b, b) [latex]a\cdot b[/latex], c)

[latex]a\times b[/latex], d) [latex]2a\times b[/latex]

4. Approach
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Use dot product, cross product equations

5. Analysis

Part a:

$$6\underline{b}=6*[6\;\;\;5\;\;\;3]\\6\

underline{b}=[36\;\;\;30\;\;\;18]$$

Part b:

$$\underline{a}\cdot\

underline{b}=[6\;\;\;5\;\;\;3]\cdot[8\;\;\;1\;\;\;3]\

\=6\cdot 8+5\cdot 1+3\

cdot3\\=48+5+9\\\underline{a}\cdot\

underline{b}=62$$

Part c:

$$\underline{a}\times\underline{b}=\begin{bmatrix}

\underline{\hat{i}} &\underline{\hat{ j}} &

\underline{\hat{k}} \\

6 & 5 & 3 \\

8 & 1 & 3

\end{bmatrix}\\(5\cdot 3-3\cdot

1)\underline{\hat{i}}-(6\cdot 3-3\cdot

8)\underline{\hat{ j}}+(6\cdot 1-5\cdot

8)\underline{\hat{k}}\\\underline{a}\times\

underline{b}=12\underline{\hat{i}}+6\

underline{\hat{ j}}-34\underline{\hat{k}}$$

Part d:

$$ 2\

underline{a}=2*[6\;\;\;5\;\;\;3]=[12\;\;\;10\;\;\;6]\\

\underline{b}=[8\;\;\;1\;\;\;3]\\2\

underline{a}\times\underline{b} = \begin{bmatrix}

\underline{\hat{i}} & \underline{\hat{ j}} &
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\underline{\hat{k}} \\

12 & 10 & 6 \\

8 & 1 & 3

\end{bmatrix} \\=(10\cdot 3-6\cdot

1)\underline{\hat{i}}-(12\cdot 3-6\cdot

8)\underline{\hat{ j}}+(12\cdot 1-10\cdot

8)\underline{\hat{k}}\\2\underline{a}\times\

underline{b}=24\underline{\hat{i}}+12\

underline{\hat{ j}}-68\underline{\hat{k}}$$

6. Review

The answer to part d is double the answer for part c,

which makes sense. It also makes sense that the

answers to b, c, and d have values in three directions,

while a only has magnitude.

Example 1.8.4: Torque, Submitted by Luke
McCarvill

1. Problem
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To start riding her bicycle, Jane must push

down on one of her bike’s pedals which are

on 16 centimeter long crank arms. Jane can

push directly downwards with her legs with a

force of 100N. Jane notices that the pedal’s

starting position can sometimes make it

more or less useful in generating torque.

a) What is the ideal angle that Jane’s bike

pedal should be at in order to generate the

most torque? Prove this mathematically.

(Assume we only care about the very start of

her very first push, and choose a reference

frame for the angle that makes most sense

for you).

b) What angle(s) should the bike pedal be at

if Jane wants to generate exactly half of the

maximum amount of torque?

c) Is there any position(s) at which the

pedal will create zero torque? Where are

they and why?
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Source: https://commons.wikimedia.org/wiki/
File:Girl_on_a_Bike_(Imagicity_116).jpg
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Source: https://pixabay.com/illustrations/
bicycle-cycle-two-wheeler-pedal-3168934/

2. Draw
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3. Knowns and Unknowns

Knowns:

[latex]\begin{aligned} &\vec r=\left[\begin{array}{c}

0.16 \\ 0 \\ 0 \end{array}\right] m \\ &\vec

F_{A}=\left[\begin{array}{c} 0 \\ -100 \\ 0

\end{array}\right] N \end{aligned}[/latex]

Unknowns:

• position of r for maximum torque

• position of r for half of maximum torque

• position of r for zero torque, and why

4. Approach

For part a), I will find a general equation for torque

based on the given values in terms of θ, then analyze the

function for its maxima

For part b), I will find the magnitude of 50% of

maximum torque and then reverse-engineer the
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equation to determine what angle(s) the pedal needs to

be at to satisfy the equation.

For part c), I will look back at my equation and find

when the equation equals zero, then try to understand

why given the example problem.

5. Analysis

Part a:

[latex]\begin{aligned} &T=\left|\vec F_{A}\right| *

\left|\vec r\right| * \sin \theta \\ &T=(100 N) *(0.16 m)

* \sin \theta \\ &T=16 \sin \theta \mathrm{Nm} \\

&\quad\left\{90^{\circ}+360^{\circ} k ; k \in

\mathbb{Z}\right\} \end{aligned}[/latex]

Thinking about the shape of the sine function in the

first period, the maximum occurs at 90 degrees.

You could say algebraically that the maximum is at 90,

450, 810 etc., but these angles all represent the same

position on the wheel. Therefore, we will use 90.

Part b:

[latex]\begin{aligned} &T_1=\left|F_{A}\right| *|r| *

\sin \theta \\ &T_1=(100 N)(0.16 m) \sin 90^{\circ} \\

&T_1=16 N m \end{aligned}[/latex]

Find 50% of the maximum torque:

[latex]T_2=\frac{T_1}{2}[/latex]

[latex]\frac{16 Nm}{2}=8 Nm[/latex]

Rearrange T2 equation: [latex]T_{2}=\left|F_{A}\right|

*|{r}| \sin \theta[/latex]

[latex]\begin{aligned}&\sin \theta=\frac{T_{2}}{\left|
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F_{A}\right| * \left| r \right|} \\ &\sin \theta=\frac{8

N m}{(100 N)(0.16 m)} \\ &\sin \theta=0.5 \\

&\theta=30^{\circ}, 150^{\circ}, etc

\end{aligned}[/latex]

Therefore, Jane could push at 30 from vertical, or 150

from vertical to create half the torque.

*Interesting to note is that half the angle does not

yield half the torque; the angle is 30, not 45. This is

because the sine function is non-linear.*

Part c:

T = 16 sinθ tells us that the angles of 0 and 180 will

give us zero torque.

This makes sense given that pushing straight down on

a stable pendulum will not cause the pendulum to

rotate!

Likewise, if you just stand on your pedals, you’re

providing lots of downward force, but creating zero

torque since the crank arm and the direction of the

force are parallel (or antiparallel)!

6. Review

These answers have the correct units (Nm and

degrees) and are within a reasonable order of magnitude

based on the given information. See logic/explanations

above for more detail.
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Example 1.8.5: Torque, submitted by Hamza
Ben Driouech

1. Problem

A person is pushing on a door with a force

of 100 N. The door is at an angle α = 45° as

shown in the sketch below.

a) Calculate the moment when r is 45 cm

and 75 cm.

b) At what angle(s) is the moment zero?

Explain why.
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Assumptions: model the force as a single

point load acting on the door.

2. Draw

Sketch:

Free-body diagram:
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3. Knowns and Unknowns

Knowns:

• F = 100 N

• r1 = 45 cm

• r2 = 75 cm

• α = 45°

Unknowns:

• M1, M2, angle when M is zero

4. Approach

Use equation below.

$$ M=|r|\cdot|F|\cdot\sin\theta$$

5. Analysis

Part a)

The angle we were given is not technically the one we

should use in the moment equation. The angle should be

between r and F. Therefore, we have to find the new

angle.
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As shown below, the angle we find is also 45°. Now we

can continue and solve for M1 and M2.

$$\theta=90^{\circ}-45^{\circ}$$

$$\theta=45^{\circ}$$

$$ M_1=|r_1|\cdot|F|\cdot\sin\theta\\M_1=0.45m\

cdot 100N\

sin(45^{\circ})\\m_1=31.82Nm\\\\M_2=|r_2|\cdot

|F|\sin\theta\\M_2=0.75m\cdot 100N\cdot\

sin(45^{\circ})\\M_2=53.03Nm$$

Part b)

$$M=|r|\cdot|F|\cdot\sin\theta\\if \sin\theta=0,

M=0\\\sin\

theta=0\\\theta=\sin^{-1}(0)\\\theta=0^{\circ},

180^{\circ}, 360^{\circ}$$, etc

Answer: the moment is zero when the angle between

the force and the moment arm is 0° or 180° (360 would

represent the same angle as 0°, as would 540°, etc.)

6. Review
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It makes sense that the moment is zero when the door

is either closed or wide open, because when we apply a

force at those positions, no movement of the door is

possible.

Example 1.8.6: Bonus Vector Material,
Submitted by Liam Murdock

1. Problem

Firstly, George traveled a displacement of

dg = [7 0 8] m from his car. George’s dog

named Sparky on the other hand traveled a

displacement of ds = [0 6 6] m from George’s

car. Secondly, George called Sparky’s name

and the dog ran to George’s position. It took

Sparky four seconds to get there.

a. What is the displacement from
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George to his dog?

b. What is Sparky’s velocity? (no need

to draw)

c. What is Sparky’s speed? (no need to

draw)

Source: https://www.piqsels.com/en/
public-domain-photo-oekac

2. Draw
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3. Knowns and Unknowns

Part a:

dg = [7 0 8] m Unknown: dsg= ?

ds = [0 6 6] m

Part b:

dsg=(determined in A) Unknown: vsg = ?

t= 4 seconds

Part c:

vsg =(determined in B) Unknown: vsg= ?

4. Approach

We are going to use vector operations (both

subtraction and division), velocity – displacement

relationship, velocity – speed relationship, and

pythagoras theorem to solve this problem.
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5. Analysis

Part a:

dsg= dg– ds

dsg =[7 0 8] m – [0 6 6] m

dsg =[7-0 0-6 8-6] m

dsg =[7 -6 2] m

Part b:

vsg=dsg/t

vsg=[7 -6 2] m/s

vsg=[7/4 -6/4 2/4] m/s

vsg=[1.75 -1.5 0.5] m/s

Part c:

vsg=vsg

vsg=(vsgx)2 + (vsgy)2 + (vsgz)2

vsg=(1.75)2 + (-1.5)2 + (0.5)2

vsg=2.36 m/s

6. Review

Part a:

One way to review the question is to walk through the

solution verbally. Our solution shows that for Sparky to

get to Gerorge, he must walk 7 m in the positive x-

direction (almost out of the page), 6 m in the negative y-

direction (left), and finally 2 m in the positive z-direction

(up).

Firstly, since the dog initially did not go in the x-

direction it makes sense Sparky would have to copy

1.8 Examples | 119



George’s exact x movement. Secondly, since George did

not move in the y – direction, it would make sense that

Sparky would just have to retrace his steps and if he

initially went 6 m right, he would have to go 6 m left.

Thirdly, George and Sparky both went upwards, but

George went 2 m higher with an altitude of 8 m

compared to Sparky’s 6 m correlating to Spraky having

to go positive 2 m in the z – direction to meet Geroge.

Therefore, since all the movements make sense for

Sparky to meet George (using logic), the answer is

proven to be right.

Part b and c:

Since B and C correlate to the same magnitude they

can be reviewed together. From a quick search, an

average dog tops out at a speed of 19 miles per hour. We

can convert this to SI units:

[latex]\frac{19 \text { miles }}{1 h r}\left(\frac{1

\mathrm{~km}}{0.621371 \text { miles

}}\right)\left(\frac{1000 \mathrm{~m}}{1

\mathrm{~km}}\right)\left(\frac{1

\mathrm{hr}}{3600}\right)=8.49 \mathrm{~m} /

\mathrm{s}[/latex]

The top speed of an average dog is 8.49 m/s. So

2.36m/s is approximately a quarter of the top speed of

an average dog. Sparky probably was not sprinting at full

speed and he could be a slower dog breed, making

2.36m/s a reasonable answer.
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CHAPTER 2: PARTICLES

In this chapter, we analyze our first static bodies (motion where

acceleration = 0), treating them as particles. The sections in this

chapter include:

• 2.1 Particle & Rigid Body – the difference between particles and

rigid bodies

• 2.2 Free Body Diagrams for Particles – learning how to model

forces and motion

• 2.3 Equilibrium Equations for Particles – analyzing static

bodies

• 2.4. Examples – problems submitted by other students.

Very simply, here are the important equations for this section (the

Ch 1 equations might be helpful too)
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2.1 Particle & Rigid Body

This may seem like a simple concept, but it is important to know the

difference between particles and rigid bodies, because it will change

the type of analysis you perform.

Particles are bodies where all the mass is

concentrated at a single point in space. Particle analysis

will only have to take into account the forces acting on

the body and translational motion because rotation is

not considered for particles.

Rigid bodies on the other hand have mass that is

distributed throughout a finite volume. Rigid body

analysis is more complex and also has to take into

account moments and rotational motions. In actuality,

no bodies are truly particles, but some bodies can be

approximated as particles to simplify analysis. Bodies

are often assumed to be particles if the rotational

motions are negligible when compared to the

translational motions, or in systems where there is no

moment exerted on the body such as a concurrent force

system.
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Source: Engineering Mechanics, Jacob Moore, et al.

http://www.oercommons.org/courses/mechanics-

map-open-mechanics-textbook/view

Particles are typically part of a larger scale, such as a sky diver falling
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through the sky, or a football flying through the air. Rigid body
analyses are required when the length or size of the object must be
considered, such as if you need to calculate the torque from turning

a bolt with a wrench, or if there is rotation, such as the bolt that is

being turned.

One way to think of it is that particles have mass, whereas rigid

bodies have mass and shape. We make an assumption that neither

particles nor rigid bodies deform (change shape). Note: we say

particles don’t deform even though we are already assuming that

the shape of particles is negligible.

In baseball, if you want to consider how far the ball travels, that

would be a particle analysis because the speed is much greater than

the size of the ball. A rigid body analysis would be how the bat

swings to hit the ball, because the length of the bat would change

how far the ball travels. A rigid body analysis could be to calculate

the spin on the ball as it flies through the air (if you focus on how it

is rotating).

Free photo: softball, batter, female, hitter, bat, helmet, stance |

Hippopx
Source: https://i0.hippopx.com/photos/613/24/1019/
softball-batter-girl-game-preview.jpg

You would have done particle analyses in your high school physics

classes. Starting in chapter 3, we’ll expand on these concepts to

include rigid bodies and bring shape and size into the problem.

Key Takeaways
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Basically: Particles have non-deforming mass & rigid

bodies have non-deforming mass with shape & size. Rigid

body analyses are required when length or size of the

object much be considered, including rotation and torque.

Particle analyses are for a grander scale where the object is

small in comparison to the distance or speed.

Application: A particle analysis would be an airplane as it

flies at a high speed through the air. A rigid body analysis

would be if you analyze how the plane is rotating in order

to turn, or to consider the size of the wheels as it is taxing

on the runway or the size of the wings to keep it in the air.

Looking ahead: Chapter 2 concerns particle analyses and

Chapters 3 – 7 focus on rigid body analyses.
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2.2 Free Body Diagrams for
Particles

A free-body diagram (FBD) helps you to simplify a complicated

problem. The first thing to remember is the object should always be

free which means, floating in space. You represent the floor or other

surfaces with forces. You might have done these particle free body

diagrams in your high school physics class, where all the forces act

at the centre of the object. (This will be different for rigid bodies).

To draw a free-body diagram remember four points:

• Add coordinate frame (which way is positive x and positive y?)

• Replace surfaces with forces ( floor, hand, and objects touching

it become arrows)

• Point forces in the correct direction (the head of the arrow

points to where the force acts. FG acts down)

• Use unique (different) names (be sure to name each force with a

different name).

For a baseball being hit by a bat (and neglecting air), the force of

gravity acts at the center, the force of the bat acts on the outside.

Notice in the figure1 the names FBat and FG are different in the figure

below. Also – you can understand what they represent quickly. Also

see the coordinate frame? You’ll be adding these in your sleep by the

end of this class.

1. Original image of baseball from:

https://openclipart.org/detail/258473/baseball-refixed

Annotations added by the author
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As you draw a free body diagram, there are a couple of

things you need to keep in mind:

(1) Include only those forces acting ON the

object whose free body diagram you are drawing.

Any force exerted BY the object on some other

object belongs on the free body diagram of the

other object.

(2) All forces are contact forces and every force

has an agent. The agent is “that which is exerting

the force.” In other words, the agent is the life

form or thing that is doing the pushing or pulling

on the object. No agent can exert a force on an

object without being in contact with the object.
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We are going to introduce the various kinds of forces

by means of examples. Here is the first

example:

A rock is thrown up into the air by a person. Draw the

free body diagram of the rock while it is up in the air.

(Your free body diagram is applicable for any time after

the rock leaves the thrower’s hand, until the last instant

before the rock makes contact with whatever it is

destined to hit.) Neglect any forces that might be exerted

on the rock by the air.

If you see the rock flying through the air, it

may very well look to you like there is nothing

touching the rock. But the earth’s gravitational

field is everywhere in the vicinity of the earth. It

can’t be blocked. It can’t be shielded. It is in the

air, in the water, even in the dirt. It is in direct

contact with everything in the vicinity of the

earth. It exerts a force on every object near the

surface of the earth. We call that force the

gravitational force. You have already studied the

gravitational force. We give a brief synopsis of it

here.

2.2 Free Body Diagrams for Particles | 131



The Gravitational Force Exerted on Objects
Near the Surface of the Earth.

Because it has mass, the earth has a

gravitational field. The gravitational field is a

force-per-mass field. It is invisible. It is not

matter. It is an infinite set of force-per-mass

vectors, one at every point in space in the

vicinity of the surface of the earth. Each force

per-mass vector is directed downward, toward

the center of the earth and, near the surface of

the earth, has a magnitude of 9.81 N/kg. The

effect of the earth’s gravitational field is to exert

a force on any object that is in the earth’s

gravitational field. The force is called the

gravitational force and is equal to the product of

the mass of the object and the earth’s

gravitational field vector: Fg=mg. Where g=9.81

N/kg is the magnitude of the earth’s

gravitational field vector. The direction of the

near-earth’s-surface gravitational force is

downward, toward the center of the earth.

Here is the free body diagram and the

corresponding table of forces:
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(1) The only thing touching the object while it

is up in the air (neglecting the air itself) is the

earth’s gravitational field. So there is only one

force on the object, namely the gravitational

force. The arrow representing the force vector is

drawn so that the tail of the arrow is touching

the object, and the arrow extends away from the

object in the direction of the force.

(2) Unless otherwise stipulated, label the

diagram yourself however it makes most sense.

Always draw a coordinate frame (Usually x is

upwards, and y extends to the right).

(3) There is no velocity information on a free

body diagram

(4) There is no force of the hand acting on the

object because, at the instant in question, the

hand is no longer touching the object. When you

draw a free body diagram, only forces that are

acting on the object at the instant depicted in

the diagram are included. The acceleration of

the object depends only on the currently-acting

forces on the object. The force of the hand is of

historical interest only.

(5) Regarding the table of forces:

a) Make sure that for any free body diagram you

draw, you are capable of making a complete
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table of forces. You are not required to provide a

table of forces with every free body diagram you

draw, but you should expect to be called upon to

create a table of forces more than once.

b) In the table of forces, the agent is the life form

or thing that is exerting the force and the victim

is the object on which the force is being exerted.

Make sure that, in every case,

the victim is the object for which the free body

diagram is being drawn.

c) In the case at hand, there is only one force so

there is only one entry in the table of forces.

d) For any object near the surface of the earth,

the agent of the gravitational force is the earth’s

gravitational field. It is okay to abbreviate that to

“Earth” because the gravitational field of the

earth can be considered to be an invisible part of

the earth, but it is NOT okay to call it “gravity.”

Gravity is a subject heading corresponding to

the kind of force the gravitational force is,

gravity is not an agent

A ball of mass m hangs at rest, suspended by a string.

Draw the free body diagram for the ball, and create the

corresponding table of forces.
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To do this problem, you need the following

information about strings:

The Force Exerted by a Taut String on an
Object to Which it is Affixed (This also applies

to ropes, cables, chains, and the like.)

The force exerted by a string, on an object to

which it is attached, is always directed away

from the object, along the length of the string.

Note that the force in question is exerted by the

string, not for instance, by some person pulling

on the other end of the string. The force exerted

by a string on an object is referred to as a

“tension force” and its magnitude is

conventionally represented by the symbol FT.

Note: There is no formula to tell you what the

tension force is. If it is not given, the only way to

get it is to use Newton’s 2nd Law.

Here is the free body diagram of the ball, and

the corresponding table of forces:

There is no “force of motion” acting on an object. Once

you have the force or forces
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exerted on the object by everything that is touching the

object, you have all the forces. Do not add a “force of

motion” to your free body diagram. It is especially

tempting to add this force when there are no actual forces

in the direction in which an object is going. Keep in mind,

however, that an object does not need a force on it to keep

going in the direction in which it is going; moving along

at a constant velocity is what an object does when there is

no net force on it.

Source: Calculus-Based Physics 1, Jeffery W. Schnick.

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 page

86

Key Takeaways

Basically: Free-body diagrams (FBDs) give you a way to

model complicated problem in a simple way. All exterior

forces are modeled with an arrow.

Application: A baseball can be modeled using a FBD to

show how the bat and gravity affect the ball.

Looking ahead: You’ll use a FBD in every step 2 in nearly

every homework problem. These are especially helpful with

Equilibrium Equations in the next section.
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2.3 Equilibrium Equations for
Particles

For a particle in static equilibrium, Newton’s 2nd law can be adapted

for [latex]\vec a = 0[/latex] and componentized in x y and z:

$$\sum\vec F=m*\vec a$$

$$\sum\vec F=0$$

$$\sum F_x=0\quad\quad\sum F_y=0\quad\quad\sum

F_z=0$$

Notice that the left size of the equation says ‘sum of the forces’

which means add up all the forces in that direction. In statics, they

will all cancel out. If you aren’t sure if something is in static motion,

sum the forces and see if they equal 0.

Static Equilibrium:

Objects in static equilibrium are objects that are not

accelerating (either linear acceleration or angular

acceleration). These objects may be stationary, or they

may have a constant velocity.

Newton’s Second Law states that the force exerted on

an object is equal to the mass of the object times the

acceleration it experiences. Therefore, if we know that

the acceleration of an object is equal to zero, then we

can assume that the sum of all forces acting on the

object is zero. Individual forces acting on the object,
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represented by force vectors, may not have zero

magnitude but the sum of all the force vectors will

always be equal to zero for objects in equilibrium.

The equations used when dealing with particles in

equilibrium are:

$$\sum\vec F=0$$

Which leads to:

$$\sum F_x=0\\\sum F_y=0\\\sum F_z=0$$

Since it is a particle, there are no moments involved

like there is when it comes to rigid bodies.

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/

2_equilibrium_concurrent/2-1_static_equilibrium/

staticequilibrium.html

Finding the Equilibrium Equations:

The first step in finding the equilibrium equations is

to draw a free body diagram of the body being analyzed.

This diagram should show all the known and unknown

force vectors acting on the body. In the free body

diagram, provide values for any of the know magnitudes

or directions for the force vectors and provide variable
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names for any unknowns (either magnitudes or

directions).

The first step in equilibrium analysis is drawing a free

body diagram. This is done by removing everything but

the body and drawing in all forces acting on the body. It

is also useful to label all forces, key dimensions, and

angles.

Next you will need to chose the x, y, and z axes. These

axes do need to be perpendicular to one another, but

they do not necessarily have to be horizontal or vertical.

If you choose coordinate axes that line up with some of

your force vectors you will simplify later analysis.

Once you have chosen axes, you need to break down

all of the force vectors into components along the x, y

and z directions (see the vectors page in Appendix 1 if

you need more guidance on this). Your first equation will

be the sum of the magnitudes of the components in the

x direction being equal to zero, the second equation will

be the sum of the magnitudes of the components in the

y direction being equal to zero, and the third (if you

have a 3D problem) will be the sum of the magnitudes in
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the z direction being equal to zero. Collectively these

are known as the equilibrium equations.

Once you have your equilibrium equations, you can

solve them for unknowns using algebra. The number of

unknowns that you will be able to solve for will be the

number of equilibrium equations that you have. In

instances where you have more unknowns than

equations, the problem is known as a statically
indeterminate problem and you will need additional

information to solve for the given unknowns.

Example:

$$F_g=(9.8)(6)\\F_g=58.8N\\\sum F_x=-T_1+T_2\

cos(15^{\circ})=0\\\sum F_y=T_2\

sin(15^{\circ})-58.8=0\\T_2=\frac{58.8}{\sin(15^{\cir

c})}=227.2N\\-T_1+227.2\

cos(15^{\circ})=0\\T_1=227.2\
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cos(15^{\circ})=219.4N\\T_1=219.4N\\T_2=227.2N$$

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/

2_equilibrium_concurrent/

2-5_equilibrium_equations_particle/

equilibriumequationsparticle.html Many more examples

are available at this site.

See additional examples: Example 1, Example 5,

Example 8

Key Takeaways
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Basically: Equilibrium equations allow you to separate the

forces and motion into each axis.

Application: A heavy object is lifted using a rope and

pulley. Based on the forces, is it in static equilibrium?

(Answer: if sum of the forces in each direction equal zero,

then yes!)

Looking ahead: We will next apply equilibrium equations

to rigid bodies, allowing use to solve more complex

problems.
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2.4. Examples

Here are examples from Chapter 2 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to the author eosgood@upei.ca.

No examples submitted from students, yet. In the mean time, here

are examples ( Example 1, Example 5, Example 8) from Engineering

Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/

websites/2_equilibrium_concurrent/

2-5_equilibrium_equations_particle/

equilibriumequationsparticle.html
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CHAPTER 3: RIGID BODY
BASICS

In this chapter, you will learn some fundamental tools for rigid

bodies, what I call the rigid body basics. Recall, rigid bodies have

mass and a particular shape or size. Here are the sections in this

Chapter:

• 3.1 Right Hand Rule – a way to help you make accurate

coordinate frames

• 3.2 Couples – rotational motion created from two forces

• 3.3 Distributed Loads – a way to express a force over a certain

area

• 3.4 Reactions & Supports – how to model the constraints that

keep an object in place

• 3.5 Indeterminate Loads – how to determine if there are too

many forces

• 3.6 Examples – examples from your peers

Here are the important equations for this chapter.
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3.1 Right Hand Rule

Before we can analyze rigid bodies, we need to learn a little trick to

help us with the cross product called the ‘right-hand rule’. We use

the right-hand rule when we have two of the axes and need to find

the direction of the third.

This is called a right-orthogonal system. The ‘orthogonal’ part

means that the three axes are all perpendicular to each other, and

the’ right’ part means that [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex], hence the right

hand rule. Remember these from section 1.5?

▪ [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex]

▪ [latex]\underline{\hat{ j}}\times\

underline{\hat{k}}=\underline{\hat{i}}[/latex]

▪ [latex]\underline{\hat{k}}\times\

underline{\hat{i}}=\underline{\hat{ j}}[/latex]

▪ [latex]\underline{\hat{ j}}\times\underline{\hat{i}}=-

\underline{\hat{k}}[/latex]

▪ [latex]\underline{\hat{k}}\times\underline{\hat{ j}}=-

\underline{\hat{i}}[/latex]

▪ [latex]\underline{\hat{i}}\times\underline{\hat{k}}=-

\underline{\hat{ j}}[/latex]

The opposite of the right-orthogonal system is the left-orthogonal

system where [latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=-\underline{\hat{k}}[/latex]. We don’t use that

one!

There are two ways to do the right hand rule, and they take

practice to conceptually understand, but this will make solving

problems much quicker. You’re going to use your fingers and thumb

to represent the x, y, and z axes.
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3.1.1 The Whole-Hand Method

In the following description, A x B = C, so for the coordinate frame,

X x Y = Z ([latex]\underline{\hat{i}}\times\

underline{\hat{ j}}=\underline{\hat{k}}[/latex]). Your fingers go in

the direction of X, then you bend them 90 degrees to point

towards Y, and your thumb is in the direction of Z.

The direction of the cross product vector A x B is

given by the right-hand rule for the cross product of

two vectors. To apply this right-hand rule, extend the

fingers of your right hand so that they are pointing

directly away from your right elbow. Extend your thumb

so that it is at

right angles to your fingers.

Keeping your fingers aligned with your forearm, point

your fingers in the direction of the first vector (the one
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that appears before the “×” in the mathematical

expression for the cross product; e.g. the A in A x B ).

Now rotate your hand, as necessary, about an

imaginary axis extending along your forearm and along

your middle finger, until your hand is oriented such

that, if you were to close your fingers, they would point

in the direction of the second vector.
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Your thumb is now pointing in the direction of the

cross product vector. C = A x B. The cross product

vector C is always perpendicular to both of the vectors

that are in the cross product (the A and the B in the case

at hand). Hence, if you draw them so that both of the

vectors that are in the cross product are in the plane of

the page, the cross product vector will always be

perpendicular to the page, either straight into the page,

or straight out of the page. In the case at hand, it is

straight out of the page.

When we use the cross product to calculate the

torque due to a force F whose point of application has a

position vector r, relative to the point about which we

are calculating the torque, we get an axial torque vector

τ. To determine the sense of rotation that such a torque

vector would correspond to, about the axis defined by

the torque vector itself, we use The Right Hand Rule For

Something Curly Something Straight. Note that we are

calculating the torque with respect to a point rather

than an axis—the axis about which the torque acts,

comes out in the answer.

Source: Jeffrey W. Schnick

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7

pages 135–137

The hardest part of right-hand rule is imagining the different axes
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and envisioning how they are perpendicular to each other.

Try this one in 2d and 3d. Imagine (or draw) the right-angle

symbols (Answer will be in a few steps)

Example 1:

Using this x and y, let’s use the right-hand rule to find the direction

of z.

Here are steps you can follow:
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Example 2:

Sometimes you will need to flip your hand 180 degrees to find which

way lets you point your fingers in the y direction, for example:
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Example 3:

It’s important for you to be able to envision how the axes are

perpendicular. Now practice using the right hand rule if you are

trying to find x.
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Your Turn!

Keep going with these examples. The rules stay the same: thumb

towards z, curled fingers towards y, extended fingers towards x.

Find the missing axis:

.

.

Did you do it?

.

.

.

Here are the answers:

.

.

3.1.2 Right Hand Rule and Torque

The third way to calculate torque, as was alluded to in Section 1.6

is to use the right hand rule to identify the axis of rotation. The

first way (the scalar method) uses | M | = |r| |F| sin Θ, and often

the angle between the position vector and force is 90 degrees.

The vector method is for more complicated situations and uses
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the cross product r x F = M. The third method finds the scalar

value separately, then uses the right hand rule to find the direction

(positive or negative along the third axis).

• Point your fingers in the direction of the perpendicular part of

position vector r (as you would for x)

• Curl them towards the direction of the Force vector F (as you

would for y)

• Your thumb is in the direction of the moment M that results

from the force (as for z)

The following will help you understand what is meant by: the

perpendicular part of position vector:

The torque τ can be expressed as the cross product of

the position vector r for the point of application of the

force, and the force vector F itself: r x F = M

Before we begin our mathematical discussion of what

we mean by the cross product, a few words about the

vector r are in order. It is important for you to be able to

distinguish between the position vector r for the force,

and the moment arm, so we present them below in one

and the same diagram. We use the same example that
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we have used before:

in which we are looking directly along the axis of

rotation (so it looks like a dot) and the force lies in a

plane perpendicular to that axis of rotation. We use the

diagramatic convention that, the point at which the

force is applied to the rigid body is the point at which

one end of the arrow in the diagram touches the rigid

body. Now we add the line of action of the force and the

moment arm r⊥ to the diagram, as well as the position
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vector r of the point of application of the force.

The moment arm can actually be defined in terms of

the position vector for the point of application of the

force. Consider a tilted x-y coordinate system, having an

origin on the axis of rotation, with one axis parallel to

the line of action of the force and one axis

perpendicular to the line of action of the force. We label

the x axis ┴ for “perpendicular” and the y axis || for
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“parallel”.

Now we break up the position vector r into its

component vectors along the ┴ (perpendicular) and ||

(parallel) axes.
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From the diagram it is clear that the moment arm r is

just the magnitude of the component ┴ vector, in the

perpendicular-to-the-force direction, of the position

vector of the point of application of the force.

Source: Calculus Based Physics, Jeffrey W.

Schnick, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7

pages 132–137

You use the right hand rule twice during this method to find the

vector. First to determine the coordinate frame and again to see

which the direction the torque is aligned. Then you multiply by the

magnitude of the perpendicular portion of the position vector (r⊥
or the “moment arm”) and the magnitude of the force vector. ):
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|M| = +/- |r⊥| |F| [latex]\hat{\underline{k}}[/latex]

* though it’s not always the [latex]\hat{\underline{k}}[/latex]

direction, it could be [latex]\hat{\underline{i}}[/latex] or

[latex]\hat{\underline{ j}}[/latex] as well. It depends how you define

your coordinate frame.

Example 4:

3.1.3 Three-Finger Configuration

If you find curling your fingers too confusing, you can try this

method that uses your thumb, pointer finger, and middle finger all

90 degrees apart. Your thumb is x, your pointer finger is y, your

middle finger is z.

160 | Statics



This is done by using your right hand, aligning your

thumb with the first vector and your index with the

second vector. The cross product will point in the

direction of your middle finger (when you hold your

middle finger perpendicular to the other two fingers).

This is illustrated in Figure A.14. Thus, you can often

avoid using equation A.1 and instead use the right hand

rule to determine the direction of the cross product and

equation A.2 to find its magnitude.

Source: Introductory Physics, Ryan Martin et

al.,https://openlibrary.ecampusontario.ca/catalogue/
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item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb, page

823–825

The “Curly Method”

For axial vectors, you use what I’m calling the curly method. To find

whether the axis of rotation is positive or negative, curl your fingers

in the direction of rotation and your thumb shows the direction of

rotation, i.e. whether rotation is along the positive or negative x y

or z direction. (This assumes you already have a coordinate frame

defined to see which axis the wheel is rotating around and which

direction).

If a wheel is rolling, the axis is what it rolls around. Curl your

fingers in the direction of rotation and your thumb shows the

direction of rotation.1

1. Hand from page 127 of Calculus Based Physics, Jeffrey W.

Schnick, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 & tire

from page 828 of Introductory Physics, Ryan Martin et

al., https://openlibrary.ecampusontario.ca/catalogue/

item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb,

Edited by author.
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Key Takeaways

Basically: The right hand rule helps us to be consistent

with how the x – y – z axes are oriented. It follows the rule

that X x Y = Z. Using your fingers and thumb, there are two

different methods. For one: point your fingers in the

direction of x, curl them towards y (you may have to flip

your hand), and your thumb shows the direction of z.

Trying to copy this 3d image onto your 2d page may be

difficult, but with practice you’ll see the right angles

between the drawn axes.

Application: How do I know which way to push on the

torque wrench to make the bolt on my wheel turn? If I
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point my thumb in the direction I want the bolt to move,

and curl my fingers around the direction of the threads, I

can see whether to push or pull on the wrench.

Looking Ahead: We will calculate the moment many times

throughout the rest of the book, and we need the right-

hand rule every time especially as we get into Chapter 4

and Rigid Body Equilibrium Equations.
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3.2 Couples

A couple is a set of equal and opposite forces that

exerts a net moment on an object but no net force.

Because the couple exerts a net moment without

exerting a net force, couples are also sometimes

called pure moments.
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The moment exerted by a couple also differs from the

moment exerted by a single force in that it is

independent of the location you are taking the moment

about. In the example below we have a couple acting on

a beam. Each force has a magnitude F and the distance

between the two forces is d.
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Now we have some point A, which is distance x from

the first of the two forces. If we take the moment of

each force about point A, and then add these moments

together for the net moment about point A we are left

with the following formula.

$$M=-(F\ast x)+(F\ast(x+d))$$

If we rearrange and simplify the formula above, we

can see that the variable x actually disappears from the

equation, leaving the net moment equal to the

magnitude of the forces (F) times the distance between

the two forces (d).

$$M=-(F\ast x)+(F\ast x)+(F\ast d)\\\\M=(F\ast

d)$$

This means that no matter what value of x we have,

the magnitude of the moment exerted by the couple will

be the same. The magnitude of the moment due to the

couple is independent of the location we are taking the

moment about. This will also work in two or three

dimensions as well. The magnitude of the moment due

to a couple will always be equal to the magnitude of the
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forces times the perpendicular distance between the

two forces.

Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/3-3_couples/couples.html

Key Takeaways

Basically: Couples are made from two forces in opposite

directions that create a moment around an axis

Application: Turning the steering wheel of your car, you

push one hand up and the other down to turn the wheel. To

calculate the size of the couple, you multiply the force

exerted by the distance between your hands (the diameter

of the wheel).

Looking Ahead: While moments are more common in Ch 4

rigid body equations, it’s important to know what couples

are and how to find them.
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3.3 Distributed Loads

3.3.1 Intensity

Distributed loads are a way to represent a force over a certain

distance. Sometimes called intensity, given the variable:

Intensity w = F / d [=] N/m, lb/ft

While pressure is force over area (for 3d problems), intensity is

force over distance (for 2d problems). It’s like a bunch of mattresses

on the back of a truck. You can model it as 1 force acting at the

center (an equivalent point load as in 3.3.2, or you can model it as

intensity and divide the total force by the width of the truck bed (the

distance that’s not visible in this image1).

1. Image of truck from: https://get.pxhere.com/photo/

car-transport-truck-vehicle-market-mattress-full-load-

small-business-rwanda-overload-pickup-truck-overfull-

automobile-make-612534.jpg
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A distributed load is any force where the point of
application of the force is an area or a volume. This

means that the “point of application” is not really a point

at all. Though distributed loads are more difficult to

analyze than point forces, distributed loads are quite

common in real world systems so it is important to

understand how to model them.

Distributed loads can be broken down into surface
forces and body forces. Surface forces are distributed

forces where the point of application is an area (a

surface on the body). Body forces are forces where the

point of application is a volume (the force is exerted on

all molecules throughout the body). Below are some

examples of surface and body forces.

Distributed loads are represented as a field of vectors.

This is drawn as a number of discrete vectors along a
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line, over a surface, or over a volume, that are

connected with a line or a surface as shown below.

Though these representations show a discrete

number of individual vectors, there is actually a

magnitude and direction at all points along the line,

surface, or body. The individual vectors represent a

sampling of these magnitudes and directions.

It is also important to realize that the magnitudes of

distributed forces are given in force per unit distance,

area, or volume. We must integrate the distributed load

over its entire range to convert the force into the usual

units of force.
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Analyzing Distributed Load:

For analysis purposes in statics and dynamics, we will

usually substitute in a single point force that is statically

equivalent to the distributed load in the problem. This

single point force is called the equivalent point load and

it will cause the same accelerations or reaction forces as

the distributed load while simplifying the math.

Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

4_statically_equivalent_systems/

4-4_distributed_forces/distributedforces.html

An additional example:

This is a more complex example of a distributed load.

This is a cartoon of an airplane with its wing covered in

a combination of snow and ice. In a real world situation

loads will not accommodate people for ease of
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calculation, you get what you get. In this case we could

approximate this shape with two semi-circles on each

end of the wing with a triangle (∇"

role="presentation">∇) in the middle. For more accuracy

we could use a system similar to the trapezoidal rule.

Source: ” Statics” by LibreTexts is licensed under CC

BY-NC-SA . https://eng.libretexts.org/Bookshelves/

Introduction_to_Engineering/

EGR_1010%3A_Introduction_to_Engineering_for_Eng

ineers_and_Scientists/

14%3A_Fundamentals_of_Engineering/

14.11%3A_Mechanics/14.11.01%3A_Statics

3.3.2 Equivalent Point Load & Location

Distributed loads can be modeled as a single point force that is

located at the centroid of the object. You can use straight-forward

algebra, or use integration for more complex shapes. Then you

replace the distributed load with the single point load acting at x

distance. See in the truck example:
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There are two ways to calculate this, using integrals and using the

area and centroid.

An equivalent point load is a single point force that

will have the same effect on a body as the original

loading condition, which is usually a distributed load.

The equivalent point load should always cause the same

linear acceleration and angular acceleration as the

original load it is equivalent to (or cause the same

reaction forces if the body is constrained). Finding the

equivalent point load for a distributed load often helps

simplify the analysis of a system by removing the

integrals from the equations of equilibrium or equations

of motion in later analysis.

Finding the Equivalent Point Load

When finding the equivalent point load we need to

174 | Statics



find the magnitude, direction, and point of application

of a single force that is equivalent to the distributed load

we are given. In this course we will only deal with

distributed loads with a uniform direction, in which case

the direction of the equivalent point load will match the

uniform direction of the distributed load. This leaves the

magnitude and the point of application to be found.

There are two options available to find these values:

1. We can find the magnitude and the point of

application of the equivalent point load via
integration of the force functions.

2. We can use the area/volume and the centroid/
center of volume of the area or volume under the

force function.

The first method is more flexible, allowing us to find

the equivalent point load for any force function that we

can make a mathematical formula for (assuming we have

the skill in calculus to integrate that function). The

second method is usually faster, assuming that we can

look up the values for the area or volume under the

force curve and the values for the centroid or center of

volume for the area under the curve.

Using Integration in 2D Surface Force
Problems:

Finding the equivalent point load via integration

always begins by determining the mathematical formula
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that is the force function. The force function

mathematically relates the magnitude of the force (F) to

the position (x). In this case the force is acting along a

single line, so the position can be entirely determined by

knowing the x coordinate, but in later problems we may

also need to relate the magnitude of the force to the y

and z coordinates. In our example to the left, we can

relate magnitude of the force to the position by stating

that the magnitude of the force at any point in Newtons

per meter is equal to the x position in meters plus one.

The magnitude of the equivalent point load will be

equal to the area under the force function. This will be

the integral of the force function over it’s entire length

(in this case from x = 0 to x = 2).

$$F_{eq}=\int_{xmin}^{xmax}F(x)dx$$
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Now that we have the magnitude of the equivalent

point load such that it matches the magnitude of the

original force, we need to adjust the position (xeq) such

that it would cause the same moment as the original

distributed force. The moment of the distributed force

will be the integral of the force function (F(x)) times the

moment arm about the origin (x). The moment of the

equivalent point load will be equal to the magnitude of

the equivalent point load that we just found times the

moment arm for the equivalent point load (xeq). If we set

these two things equal to one another and then solve for

the position of the equivalent point load (xeq) we are left

with the following equation:

$$x_{eq}=\frac{\int_{xmin}^{xmax}(F(x)\ast

x)dx}{F_{eq}}$$

Now that we have the magnitude, direction, and

position of the equivalent point load, we can draw the

point load in our original diagram. This point force can

be used in place of the distributed force in further

analysis.
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Using the Area and Centroid in 2D
Surface Force Problems:

As an alternative to using integration, we can use the

area under the force curve and the centroid of the area

under the force curve to find the equivalent point load’s

magnitude and point of application respectively.
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The magnitude(Feq) of the equivalent point load will

be equal to the area under the force function. We can

find this area using calculus, but there are often easier

geometry based ways of finding the area under the force

function.

The equivalent point load will also travel through
centroid of the area under the force function. This

allows us to find the value for xeq. The centroid for many

common shapes can be looked up in tables, and the

parallel axis theorem can be used to determine the

centroid of more complex shapes (see the centroid page

for more details).
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Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

4_statically_equivalent_systems/

4-5_equivalent_point_load/equivalentpointload.html

Here are the equations for some common shapes:

Example 1: Equivalent force and location:

What is the resultant force and where does it act from the wall?
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Source: http://mechanicsmap.psu.edu/websites/
4_statically_equivalent_systems/4-5_equivalent_point_load

See solution here using integration from Engineering Mechanics,

Jacob Moore et al., http://mechanicsmap.psu.edu/websites/

4_statically_equivalent_systems/4-5_equivalent_point_load/

pdf/EquivalentPointLoad_WorkedExample1.pdf

Example 2 (note: 1 kip = 1000 lb):
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Example 3:

Example 4:
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Source: ” Equilibrium Structures, Support Reactions,

Determinacy and Stability of Beams and Frames” by

LibreTexts is licensed under CC BY-NC-ND .

https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.03%3A_Equilibrium_Structures_Support_Reactions_

Determinacy_and_Stability_of_Beams_and_Frames
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3.3.3 Composite Distributed Loads

When there is a complicated shape, it can be easier to model it

as more than 1 type of distributed load. You calculate each force

separately and then use a weighted equation to find the total

distance the force acts from a point that you select.

[latex]\quad\quad\quad\quad\text{Using area: }\quad\quad\

quad\quad\quad\quad\quad\quad\quad \text{Using

Integrals:}\\ \quad\quad\quad\quad\bar{x}=\frac{\sum

F_{i}x_i}{\sum F_i} \quad\quad\quad\quad\quad\quad\quad\

quad\quad\quad \bar{x}=\frac{\int x w(x) d x}{\int w(x) d

x}[/latex]

A bit bigger:

For the following complex shape, this is how you find the

composite equivalent point force and location

([latex]\bar{x}[/latex]):
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Key Takeaways

Basically: Distributed loads are a way to model forces in

2d. F = w d Sometimes called intensity, distributed loads

have units of force over distance: N/m or lb/ft.

Application: For a truck carrying a heavy uneven load,

find where the center of the force is.

Looking ahead: Distributed load helps to model uneven

loads. We’ll see it again as we do beam analysis
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3.4 Reactions & Supports

Imagine a beam extending from the wall. How much weight can the

beam handle before it breaks away or falls ‘off’ the wall? It depends

on the way it’s attached to the wall. We model these real world

situations using forces and moments.For example, the grand canyon

skywalk lets people walk out over the grand canyon. You want to be

sure that the skywalk is so the people on it are safe.

We call the skywalk a cantilever beam and turn the real world

beam into a 2d model with constrains. So we can use the same

terminology, it is a fixed constraint, preventing horizontal

movement, vertical movement, and rotation.
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Reaction forces and moments are how we model constraints on

structures. They are external forces. There are 3 different kinds

of constraints we will focus on in this course and they each have

different reaction forces and moments:

1. Pinned (Frictionless)

◦ Two reaction forces acting perpendicularly in the x and y

directions.

◦ Pinned constraint and then its free body diagram shown:

2. Fixed

◦ Two reaction forces acting perpendicularly in the x and y

directions
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◦ Moment rotating about fixed constraint (usually a wall),

use right hand rule to find its direction

◦ This is also called a cantilever beam.

◦ Fixed constraint and then FBD shown

3. Roller (there are multiple kinds)

◦ Single reaction force acting in the y direction

◦ No moment is created

◦ This can be the ground that the object rests on as well

◦ Free body diagram shown for roller

Notice that the Fixed restraint is the most restrictive and the

roller is the least restrictive. You put a force to show how the

restraint restricts motion. The roller only keeps the object from

moving vertically, so there is only 1 force. The pinned restraint

doesn’t allow horizontal or vertical movement, hence the two

forces. The fixed beam restricts vertical translation, horizontal

translation, and rotation, so there is a moment and two forces. Note

that this applies only to 2d restraints.

Here is a summary showing what motion is allowed by that type

of constraint:

188 | Statics



Typically reaction forces are either as follows: a pinned and a

fixed reaction force together (1 reaction force + 2 reaction forces =

3 restraints) or a fixed beam (2 reaction forces and 1 moment = 3

restraints).

The information shown here is to model 2d situations. We don’t

get into 3d problems in this statics course, needless to say, there

are more reaction forces and moments involved in 3-dimentsions

instead of 2 dimensions. The following section provides a second

explanation on reactions & supports:
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3.4.1 Pin or Hinge Support

A pin support allows rotation about any axis but

prevents movement in the horizontal and vertical

directions. Its idealized representation and reactions are

shown in Table 3.1:

3.4.2 Roller Support

A roller support allows rotation about any axis and

translation (horizontal movement) in any direction

parallel to the surface on which it rests. It restrains the

structure from movement in a vertical direction. The

idealized representation of a roller and its reaction are

also shown in Table 3.1.

3.4.3 Rocker Support
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The characteristics of a rocker support are like those

of the roller support. Its idealized form is depicted in

Table 3.1.

3.4.4 Link

A link has two hinges, one at each end. It permits

movement in all direction, except in a direction parallel

to its longitudinal axis, which passes through the two

hinges. In other words, the reaction force of a link is in

the direction of the link, along its longitudinal axis.

3.4.5 Fixed Support

A fixed support offers a constraint against rotation in

any direction, and it prevents movement in both

horizontal and vertical directions.

Example 1:
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Example 2 (Ax added even though it turns out to be 0):

Example 3:
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Example 4:
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Source: ” Equilibrium Structures, Support Reactions,

Determinacy and Stability of Beams and Frames” by

LibreTexts is licensed under CC BY-NC-ND .

https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.03%3A_Equilibrium_Structures_Support_Reactions_

Determinacy_and_Stability_of_Beams_and_Frames
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Key Takeaways

Basically: Reaction forces and moments (or constraints)

show how motion is restricted, here that is in 2 dimensions.

Application: A beam attached to the wall has three ways

of restricting the motion: horizontal, vertical, and

rotational.

Looking Ahead: Every time we model an scenario, we will

use reaction forces to show what type of motion is being

restrained. In Chapter 4, we will be able to calculate the

reaction forces/moments.

Written by Gayla & Libby

3.4 Reactions & Supports | 195



3.5 Indeterminate Loads

Determinate Loads

Once you have your equilibrium equations, you can solve them for

unknowns using algebra. The number of unknowns that you will be

able to solve for will be the number of equilibrium equations that

you have. In the x-y-z coordinate frame, there are 3 equations. so

there can be 3 unknowns. These are statically determinate.

Typically reaction forces are either as follows: a pinned and a

fixed reaction force together (1 reaction force + 2 reaction forces =

3 restraints) or a fixed beam (2 reaction forces and 1 moment = 3

restraints).

Indeterminate Loads

When you have more unknowns than equations, the problem is

a statically indeterminate problem and you will need additional

information to solve for the given unknowns. You’ll learn how to

model and solve for these problems in your Structures course, but

for Statics you need to be able to identify what is determinate and

what is indeterminate.

Essentially, a problem in statically indeterminate if there are more

unknown variables then there are equations you can use to solve

for the unknowns. This means it cannot be solved using equilibrium
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equations alone. You would need to simplify the problem or make

as assumption for it to be solved. You’ll look into that more in

Structures, because in real life, we want redundancy. We want to be

sure that structures are strong and one part can fail but that the

whole building doesn’t collapse. However, we cannot over-constrain

something so that is breaks because it has no way to expand during

heat or cooling. All of this makes it harder to model, but safer to use.

Here are examples of statically indeterminate problems:

Here is a real world example of beams. Notice the breaks between

sections (in the yellow circles) to allow for expansion and

contraction. The top beam in between yellow circles would be an

example of a pin and roller system where one side is pinned and the

other side is a roller allowing for horizontal expansion.
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Source: https://www.maxpixel.net/
Guangdong-Structure-Shenzhen-Bridge-Metro-Station-5998185

Examples of statically indeterminate structures:
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Source: ” Equilibrium Structures, Support Reactions,

Determinacy and Stability of Beams and Frames” by

LibreTexts is licensed under CC BY-NC-ND .

https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.03%3A_Equilibrium_Structures_Support_Reactions_

Determinacy_and_Stability_of_Beams_and_Frames

Key Takeaways

Basically: When you have more unknowns than

equations, the problem is a statically indeterminate

problem

Application: Most situations are statically indeterminate,
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such as how beams are supported to provide for

redundancy, thus we make assumptions to model a problem

using equilibrium equations.

Looking Ahead: In Structures you will learn how to solve

for statically indeterminate problems. In Statics, you need

to be able to identify them.

Written by Gayla & Libby
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3.6 Examples

Here are examples from Chapter 3 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to the author eosgood@upei.ca.

Example 3.6.1: Reaction Forces, Submitted
by Andrew Williamson

1. Problem

A family is sitting watching TV on their

couch. The couch is 5 m long and weighs 120

N. The child is sat 1 m away from one end and

has a mass of 30 kg. The mother is sat 0.5 m

away from the child and has a mass of 60 kg.

The father is 3 m away from the mother and

has a mass of 70 kg.

a) Draw a free-body diagram of the couch
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b) Calculate the reaction force on each of

the two legs.

Assume the couch is supported by two

rollers.

Source: https://www.maxpixel.net/
Seat-Couch-Interior-Home-Furniture-Room-Sofa-4
2817

2. Draw

Sketch:
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3. Knowns and Unknowns

Knowns:

• g = 9.81 m/s2

• mc = 30 kg

• mM = 60 kg

• mf = 70 kg

• Fg = 120 N

• rc = 1 m

• rM = 1.5 m

• rf = 4.5 m

• rB = 5 m

• rg = 2.5 m

Unknowns: NA, NB

4. Approach

Use equilibrium equations
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5. Analysis

Part a:

Part b:

$$\sum M_B=0=N_B\cdot r_B-F_c\cdot r_c-

F_M\cdot r_M-F_f\cdot r_f-F_g\cdot

r_g\\\\N_B(5m)=(30kg\cdot 9.81m/s^2)(1m)+(60kg\

cdot 9.81m/s^2)(1.5m)\\+(70kg\cdot 9.81m/

s^2)(4.5m)+(120N)(2.5m)$$$$\\N_B(5m)=294.3Nm+882.

9Nm +3090.15Nm+300Nm\\\\N_B(5m)=4567.35N

m\\\\N_B\

frac{4567.35Nm}{5m}\\\\N_B=913.47N\\\\N_B=913N

$$
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$$\sum F_y=0=N_A+N_B-F_C-F_M-F_f-

F_g\\\\N_A=F_C+F_M+F_f+F_g-

N_B\\\\N_A=(30kg\cdot 9.81m/s^2)+(60kg\cdot

9.81m/s^2)\\+(70kg\cdot 9.81m/

s^2)+120N-913.47N$$$$\\N_A=294.3N+588.6N+686.7N+

120N-913.47N$$$$\\N_A=776.13N\\\\\\underline{N_

A=776N}$$

6. Review

It is interesting that NB is larger than NA, because the

weight of the mother and child combined (80 kg) is

larger than that of the father (70 kg). However, when you

sum the moments at point B instead of A, you get the

same answer. The distance between the reaction forces

and the nearest forces is important, as well as the

magnitude of the forces themselves. The distance

between A and Fc is 1 m, while the distance between B

and Ff is only 0.5 m.

Additionally, it makes sense that both NA and NB are

positive, i.e. are in the positive y direction.
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Example 3.6.2: Couples, Submitted by Kirsty
MacLellan

1. Problem

A water valve is opened by a wheel with a

diameter of 10 inches. It takes 7.5 lb of force

to open the valve. What is the moment it

takes to open the valve?

Real-life scenario:

Source: https://www.pxfuel.com/en/
free-photo-ekahu
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2. Draw

Sketch:

Free-body diagram:
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3. Knowns and Unknowns

Known:

d = 10 in

F = 7.5 lb

Unknown: M

4. Approach

Determine the moment by finding the cross product

of rA and FA, then rB and FB, then add.

5. Analysis

Find radius:

$$r=\frac{d}{2}\\r=\frac{10in}{2}\\r=5in\\5in\

times\frac{1ft}{12in}=0.42ft$$

Find rA, FA, rB, and FB in vector form:

$$ \underline{r}_A= \begin{bmatrix}

0.42 \\

0

\end{bmatrix}ft\:\; \underline{F}_A=\begin{bmatrix}

0 \\

7.5

\end{bmatrix}lb \\\underline{r}_B=\begin{bmatrix}

-0.42 \\

0

\end{bmatrix}ft\:\; \underline{F}_B=\begin{bmatrix}

0 \\

-7.5

\end{bmatrix}lb $$
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Find MA:

$$\underline{M}_A=\underline{r}_A\times

\underline{F}_A=\begin{bmatrix}

\underline{\hat{i}} & \underline{\hat{ j}} &

\underline{\hat{k}} \\

0.42 & 0 & 0 \\

0 & 7.5 & 0

\end{bmatrix}$$ $$\underline{M}_A=\hat{i}

\begin{bmatrix}

0 & 0 \\

7.5 & 0

\end{bmatrix} -\underline{\hat{ j}} \begin{bmatrix}

0.42 & 0 \\

0 & 0

\end{bmatrix}+\underline{\hat{k}} \begin{bmatrix}

0.42 & 0 \\

0 & 7.5

\end{bmatrix}\\\underline{M}_A=(\underline{\hat{i}}(

0)-\underline{\hat{ j}}(0)+\underline{\hat{k}}(o.42\cdot

7.5-0\cdot 0))ft\cdot lb\\\underline{M}_A=3.15\

underline{\hat{k}} ft\cdot lb$$

Find MB:

$$\underline{M}_B=\underline{r}_B\times

\underline{F}_B=\begin{bmatrix}

\underline{\hat{i}} & \underline{\hat{ j}} &

\underline{\hat{k}} \\

-0.42 & 0 & 0 \\

0 & -7.5 & 0

\end{bmatrix}$$$$\underline{M}_B=\hat{i}

\begin{bmatrix}

0 & 0 \\
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-7.5 & 0

\end{bmatrix} -\underline{\hat{ j}} \begin{bmatrix}

-0.42 & 0 \\

0 & 0

\end{bmatrix}+\underline{\hat{k}} \begin{bmatrix}

-0.42 & 0 \\

0 & -7.5

\end{bmatrix}\\\underline{M}_B=(\underline{\hat{i}}(

0)-\hat{ j}(0)+\underline{\hat{k}}(-0.42\cdot -7.5-0\

cdot 0))ft\cdot lb\\\underline{M}_B=3.15\

underline{\hat{k}} ft\cdot lb$$

Add MA and MB to get M:

$$\underline{M}=\underline{M}_A+\underline{M}_B

\\\underline{M}=3.15ft\cdot lb+3.15ft\cdot

lb\\\underline{M}=6.3\underline{\hat{k}}ft\cdot lb$$

6. Review

This answer makes sense because there is only

moment acting in the k direction.

Note: we could have come to the same answer using

the formula M = F*d, which would have been faster.

$$M=f\cdot d\\M=7.5lb\cdot

10in(\frac{1ft}{12in})\\M=7.5lb\cdot

\frac{5}{6}ft\\\\M=6.25ft\cdot lb$$

This answer is slightly more accurate, because we

didn’t round when converting between inches and feet

(in the original solution, we rounded 0.416667 to 0.42).
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Source:
https://
www.m
axpixel.
net/
photo-5
76088

Example 3.6.3: Distributed Load, Submitted
by Luciana Davila

1. Problem

A shelf on the wall is 1.5 meters away from

the floor. The shelf has a length of 100 cm. A

person starts putting different objects on it

to create a distributed load. The load created

a curve described by:

w = 4x4 +2 N/m.

Calculate the resultant force and how far it

is acting from the wall.

Shelf, Floating, Bathroom, Glass,

Interior, Decor
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2. Draw

Sketch:

Free-body diagram:
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3. Knowns and Unknowns

Knowns:

• w = 4x4 + 2 N/m

• L = 100 cm

• xmin = 0

• xmax = 1

Unknowns: xr, Fr

4. Approach

Use distributed load equations:

$$F_r=\int^{xmax}_{xmin}

wdx\\X_r=\frac{\int^{xmax}_{xmin}

x*w(x)*dx}{\int^{xmax}_{xmin}wdx}$$

5. Analysis

Solve for Fr:

$$ F_r=\int^1_0 (4x^4+2)dx\;\;

N\\F_r=(\frac{4x^5}{5}+2x)\vert^1_0\;\;N\\F_r=(\f

rac{4}{5}+2)N\\F_r=2.8N$$

Solve for xr:

$$X_r=\frac{(\int^1_0x(4x^4+2)dx)N/

m}{\int^1_0(4x^4+2)dx)N}\\X_r=\frac{\int^1_0(4x^

5+2x)dxN/

m}{2.8N}\\X_r=\frac{(\frac{4x^6}{6}+\frac{2x^2}{2})\

vert^1_0N/m}{2.8N}\\X_r=\frac{(\frac{2}{3}+1)N/

m}{2.8N}\\X_r=0.59m$$

6. Review

The function shows an increasing curve on the

interval, so it makes sense that the resultant force would
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be applied closer to the right end of the beam than the

left end.
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CHAPTER 4: RIGID BODIES

This is arguably the most fundamental chapter for Statics. Learn

these concepts and the next two chapters will make a lot of sense.

Without this chapter, the next chapters will be much more

confusing. When people talk about Statics, this chapter contains the

concepts they are talking about. You will use free-body diagrams

and the equilibrium equations in many other courses. Here are the

sections in this Chapter:

◦ 4.1 External Forces – Types of external forces

◦ 4.2 Rigid Body Free Body Diagrams – How to model

problems to be able to solve them ** very important

section

◦ 4.3 Rigid Body Equilibrium Equations – How to apply what

you learned on particles to rigid bodies

◦ 4.4 Friction and Impending Motion – Special cases of an

external force looking at slipping and tipping

◦ 4.5 Examples – Examples from your peers

Here are the important equations for this chapter.
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4.1 External Forces

When we say ‘forces’ in Statics, we are generally talking about

external forces (such as the reaction forces discussed in the

previous chapter) and internal forces (that we will discuss in

Chapter 5 and 6). Generally, external forces include:

• gravitational force (or weight)

• normal force

• frictional force

• spring force

• applied force (such as reaction forces & tension) – this also

includes applied moments such as from motors

In science class you probably learned about the fundamental forces

of nature: gravitational, electromagnetic, and weak and strong

nuclear forces. Normal force, friction, spring, and applied forces

are all types of electromagnetic forces. The charged and neutral

particles attract or repel each other. For example, the reason your

laptop doesn’t fall through the table is that the electrons in the

atoms of the two objects are repelling each other, and both objects

are being pulled down by another fundatmental force: gravitational

force. See this page for more information. The four fundamental

forces are beyond the scope of this Statics class, but ti’s important

to know the background how the external forces operate. In this

class, we’ll use our understanding of the the external forces to learn

how to quantify the forces and calculate the value of other forces.

To calculate each force individually, use the following equations:

• Gravity: Fg = mg

• Normal: Calculated

• Friction: Ff = mN

• Spring: FS = -kx

• Applied: Measured or calculated
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Forces are given many names, such as push, pull,

thrust, and weight. Traditionally, forces have been

grouped into several categories and given names

relating to their source, how they are transmitted, or

their effects. Several of these categories are discussed in

this section.

Normal Force

Weight (also called the force of gravity) is a pervasive

force that acts at all times and must be counteracted to

keep an object from falling. You must support the

weight of a heavy object by pushing up on it when you

hold it stationary. But how do inanimate objects like a

table support the weight of a mass placed on them, such

as shown in the figure below? When the bag of dog food

is placed on the table, the table sags slightly under the

load. This would be noticeable if the load were placed on

a card table, but even a sturdy oak table deforms when a

force is applied to it. Unless an object is deformed

beyond its limit, it will exert a restoring force much like

a deformed spring (or a trampoline or diving board). The

greater the deformation, the greater the restoring force.

Thus, when the load is placed on the table, the table

sags until the restoring force becomes as large as the

weight of the load. At this point, the net external force

on the load is zero. That is the situation when the load is
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stationary on the table. The table sags quickly and the

sag is slight, so we do not notice it. But it is similar to

the sagging of a trampoline when you climb onto it.

We must conclude that whatever supports a load, be

it animate or not, must supply an upward force equal to

the weight of the load, as we assumed in a few of the

previous examples. If the force supporting the weight of

an object, or a load, is perpendicular to the surface of

contact between the load and its support, this force is
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defined as a normal force and here is given by the

symbol [latex]\vec N[/latex] N→." role="presentation"

style="font-family: proxima-nova, sans-serif;padding:

1px 0px;margin: 0px;font-size: 17.44px;vertical-align:

baseline;background: #ffffff;border: 0px;line-height:

0;text-indent: 0px;text-align: left;text-transform:

none;font-style: normal;font-weight: 400;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color:

#373d3f"> . (This is not the newton unit for force, N.)

The word normal means perpendicular to a surface. This

means that the normal force experienced by an object

resting on a horizontal surface can be expressed in

vector form as follows:

$$\vec N=-m\vec g$$

In scalar form, this becomes:

$$N=mg$$

The normal force can be less than the object’s weight

if the object is on an incline.

When an object rests on an incline that makes an

angle θ θ" role="presentation" style="font-family:

proxima-nova, sans-serif;padding: 1px 0px;margin:

0px;font-size: 17.44px;vertical-align:

baseline;background: #ffffff;border: 0px;line-height:

0;text-indent: 0px;text-align: left;text-transform:

none;font-style: normal;font-weight: 400;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color:

#373d3f">with the horizontal, the force of gravity acting
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on the object is divided into two components: a force

acting perpendicular to the plane, wywy"

role="presentation" style="font-family: proxima-nova,

sans-serif;padding: 1px 0px;margin: 0px;font-size:

17.44px;vertical-align: baseline;background:

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-

weight: 400;letter-spacing: normal;float: none;direction:

ltr;max-width: none;max-height: none;min-width:

0px;min-height: 0px;color: #373d3f">, and a force

acting parallel to the plane, wx. The normal force

[latex]\vec N[/latex] N→." role="presentation"

style="font-family: proxima-nova, sans-serif;padding:

1px 0px;margin: 0px;font-size: 17.44px;vertical-align:

baseline;background: #ffffff;border: 0px;line-height:

0;text-indent: 0px;text-align: left;text-transform:

none;font-style: normal;font-weight: 400;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color:

#373d3f"> is typically equal in magnitude and

opposite in direction to the perpendicular component of

the weight wy. The force acting parallel to the plane, wx,

causes the object to accelerate down the incline.
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Be careful when resolving the weight of the object

into components. If the incline is at an angle θ θ"

role="presentation" style="font-family: proxima-nova,

sans-serif;padding: 1px 0px;margin: 0px;font-size:

17.44px;vertical-align: baseline;background:

#ffffff;border: 0px;line-height: 0;text-indent: 0px;text-

align: left;text-transform: none;font-style: normal;font-

weight: 400;letter-spacing: normal;float: none;direction:

ltr;max-width: none;max-height: none;min-width:

0px;min-height: 0px;color: #373d3f">to the horizontal,

then the magnitudes of the weight components are:

$$w_x=w\sin\theta=mg\sin\theta$$

and

$$w_y=w\cos\theta=mg\cos\theta$$

We use the second equation to write the normal force

experienced by an object resting on an inclined plane:

$$N=mg\cos\theta$$

Instead of memorizing these equations, it is helpful to

be able to determine them from reason. To do this, we

draw the right angle formed by the three weight
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vectors. The angle θ θ" role="presentation" style="font-

family: proxima-nova, sans-serif;padding: 1px

0px;margin: 0px;font-size: 17.44px;vertical-align:

baseline;background: #ffffff;border: 0px;line-height:

0;text-indent: 0px;text-align: left;text-transform:

none;font-style: normal;font-weight: 400;letter-spacing:

normal;float: none;direction: ltr;max-width: none;max-

height: none;min-width: 0px;min-height: 0px;color:

#373d3f">of the incline is the same as the angle formed

between w and wy. Knowing this property, we can use

trigonometry to determine the magnitude of the weight

components:

$$\cos\theta=\frac{w_y}{w},\:w_y=w\cos\

theta=mg\cos\theta\\\sin\

theta=\frac{w_z}{w},\:w_x=w\sin\theta=mg\sin\

theta$$

Tension

A tension is a force along the length of a medium; in

particular, it is a pulling force that acts along a stretched

flexible connector, such as a rope or cable. The word

“tension” comes from a Latin word meaning “to stretch.”

Not coincidentally, the flexible cords that carry muscle

forces to other parts of the body are called tendons.

Any flexible connector, such as a string, rope, chain,

wire, or cable, can only exert a pull parallel to its length;

thus, a force carried by a flexible connector is a tension

with a direction parallel to the connector. Tension is a
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pull in a connector. Consider the phrase: “You can’t push

a rope.” Instead, tension force pulls outward along the

two ends of a rope.

Consider a person holding a mass on a rope. If the

5.00-kg mass in the figure is stationary, then its

acceleration is zero and the net force is zero. The only

external forces acting on the mass are its weight and the

tension supplied by the rope. Thus,

$$F_{net}=T-w=0$$

where T and w are the magnitudes of the tension and

weight, respectively, and their signs indicate direction,

with up being positive. As we proved using Newton’s

second law, the tension equals the weight of the

supported mass:

$$T=w=mg$$

Thus, for a 5.00-kg mass (neglecting the mass of the

rope), we see that

$$T=mg=(5.00kg)(9.80m/s^2)=49.0N$$

If we cut the rope and insert a spring, the spring

would extend a length corresponding to a force of 49.0

N, providing a direct observation and measure of the

tension force in the rope.

224 | Statics



4.1 External Forces | 225



Flexible connectors are often used to transmit forces

around corners, such as in a hospital traction system, a

tendon, or a bicycle brake cable. If there is no friction,

the tension transmission is undiminished; only its

direction changes, and it is always parallel to the flexible

connector, as shown below:

If we wish to create a large tension, all we have to do

is exert a force perpendicular to a taut flexible

connector. We can see that the tension in the rope is

related to the force acting perpendicularly in the

following way:

$$T=\frac{w}{2\sin\theta}$$

We can extend this expression to describe the

tension T created when a perpendicular force (F⊥) is

exerted at the middle of a flexible connector:

$$T=\frac{F\perp}{2\sin\theta}$$

The angle between the horizontal and the bent

connector is represented by θ. In this case, T becomes

large as θ approaches zero. Even the relatively small

weight of any flexible connector will cause it to sag,

since an infinite tension would result if it were
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horizontal (i.e., θ=0 and sin θ=0). For example, the image

below shows a situation where we wish to pull a car out

of the mud when no tow truck is available. Each time the

car moves forward, the chain is tightened to keep it as

straight as possible. The tension in the chain is given

by[latex]T=\frac{F\perp}{2\sin\theta}[/latex] and

since θ is small, T is large. This situation is analogous to

the tightrope walker, except that the tensions shown

here are those transmitted to the car and the tree

rather than those acting at the point where F⊥ is

applied.

Friction

Friction is a resistive force opposing motion or its

tendency. Imagine an object at rest on a horizontal

surface. The net force acting on the object must be zero,

leading to equality of the weight and the normal force,

which act in opposite directions. If the surface is tilted,

the normal force balances the component of the weight

perpendicular to the surface. If the object does not slide

downward, the component of the weight parallel to the

inclined plane is balanced by friction. Friction is

discussed in greater detail in the next chapter.
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Spring Force

A spring is a special medium with a specific atomic

structure that has the ability to restore its shape, if

deformed. To restore its shape, a spring exerts a

restoring force that is proportional to and in the

opposite direction in which it is stretched or

compressed. This is the statement of a law known as

Hooke’s law, which has the mathematical form

$$\vec F=-k\vec x$$

The constant of proportionality k is a measure of the

spring’s stiffness. The line of action of this force is

parallel to the spring axis, and the sense of the force is

in the opposite direction of the displacement vector.

The displacement must be measured from the relaxed

position; x=0 when the spring is relaxed.
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Source: University Physics Volume 1, Openstax CNX.

https://courses.lumenlearning.com/suny-

osuniversityphysics/chapter/5-6-common-forces/
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Key Takeaways

• Basically: External forces include: gravitational,

applied, normal, frictional, and spring.

• Application: Everything. A book on a table, Tigger

bouncing on his tail, a shooting star, and a soccer ball

rolling into the goal.

• Looking Ahead: Ch 5 and 6 will look at internal

forces. Section 4.3 will use the known forces to

calculate the unknown forces. Section 4.2 will model

the forces on a diagram.
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4.2 Rigid Body Free Body
Diagrams

Following what we learned in Section 2.2 on particle Free-Body

Diagrams (FBDs), this section will expand on that for rigid bodies.

The biggest difference between a particle and rigid body FBD is

where the force is applied. In a rigid body FBD, you have to be

precise about pointing the head of the force arrow to the location

where it applied. For example. if we wanted to make a FBD of you

and me high-5’ing, you would apply the force from your hand onto

my hand, not at my center of mass.

In this section, first we will learn how to do a FBD for a part, then

we look at how to model a system of multiple objects.

4.2.1 Part FBD

When modelling a single object using an FBD, you are simplifying

a complex problem into specific forces using arrows and an object

floating in space. The floor becomes a normal force arrow and a

frictional force arrow. Pushing or pulling on an object becomes an

applied force with the arrow pointing to or from (pushing or pulling)

the location where the pushing or pulling occurs. Remember the

rules from section 2.2 still apply:

• Add coordinate frame (which way is positive x and positive y?)

• Replace surfaces with forces ( floor, hand, and objects touching

it become arrows)

• Point forces in the correct direction (the head of the arrow

points to where the force acts. FG acts down)

• Use unique (different) names (be sure to name each force with a
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different name).

Here are some tips to keep in mind about each of the forces:

• Gravity acts on every particle in an object. Because we don’t

want a million little arrows on the object, we sum the effect of

gravity at the center of mass. This is also because we generally

know the total mass of something and where that occurs on an

object (often at the geometric center), so we concentrate the

force of gravity at this center of mass.

• Normal forces always act perpendicular to the surface, so if the

ground is at an angle, then the normal force acts 90 degrees

from that angle (perpendicular).

• Frictional forces act parallel to the plane between the two

surfaces. This makes it a shear force, which we’ll look at in

Chapter 6.

• Friction always opposes motion, a fact that will be very

important in your dynamics class.

• Spring force is often shown as negative because the force acts

in the opposite direction of the motion traveled. In application,

you set the direction of the frictional force to match if it is

pushing or pulling.

• Applied forces (and moments), such as distributed loads,

motors, pushing on an object, tension, etc.

The steps to make a FBD are:

1. Draw shape

2. Add coordinate frame

3. Replace forces with arrows

4. Label each force uniquely

To model a book being pushed across the table, you would apply the

following forces at the following locations (see image below)

• the normal force on the bottom of the book (green arrow)
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• the frictional force running along the bottom surface between

the book and table (yellow arrow)

• the gravitational force acting at the center of mass (pink arrow)

• any applied force at the point of application, such as your hand

pushing on the book (blue arrow)

If instead, the book were being pulled by a string, the image would

be the same but the applied force and frictional force would change

direction (because friction always opposes motion).
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A free body diagram is a tool used to solve

engineering mechanics problems. As the name suggests,

the purpose of the diagram is to “free” the body from all

other objects and surfaces around it so that it can be

studied in isolation. We will also draw in any forces or

moments acting on the body, including those forces and

moments exerted by the surrounding bodies and

surfaces that we removed.

The diagram below shows a ladder supporting a

person and the free body diagram of that ladder. As you

can see, the ladder is separated from all other objects

and all forces acting on the ladder are drawn in with key

dimensions and angles shown.
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The first step in solving most mechanics problems will

be to construct a free body diagram. This simplified

diagram will allow us to more easily write out the

equilibrium equations for statics or strengths of

materials problems, or the equations of motion for

dynamics problems.

To construct the diagram we will use the following

process.

1. First draw the body being analyzed, separated

from all other surrounding bodies and surfaces.

Pay close attention to the boundary, identifying

what is part of the body, and what is part of the

surroundings.

2. Second, draw in all external forces and

moments acting directly on the body. Do not

include any forces or moments that do not

directly act on the body being analyzed. Do not
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include any forces that are internal to the body

being analyzed. Some common types of forces

seen in mechanics problems are:

◦ Gravitational Forces: Unless otherwise

noted, the mass of an object will result in a

gravitational weight force applied to that

body. This weight is usually given in pounds

in the English system, and is modeled as 9.81

(g) times the mass of the body in kilograms

for the metric system (resulting in a weight

in Newtons). This force will always point

down towards the center of the earth and

act on the center of mass of the body.

▪ Normal Forces (or Reaction
Forces): Every object in direct contact

with the body will exert a normal force

on that body which prevents the two

objects from occupying the same

space at the same time. Note that only

objects in direct contact can exert

normal forces on the body.

▪ An object in contact with
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another object or surface will

experience a normal force that

is perpendicular (hence normal)

to the surfaces in contact.

▪ Joints or connections between

bodies can also cause reaction

forces or moments, and we will

have one force or moment for

each type of motion or rotation

the connection prevents.

▪ Friction Forces: Objects in direct

contact with the body can also exert

friction forces on the body, which will

resist the two bodies sliding against
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one another. These forces will always

be perpendicular to the surfaces in

contact. Friction is the subject of an

entire chapter in this book, but for

simple scenarios we usually assume

rough or smooth surfaces.

▪ For smooth surfaces we

assume that there is no friction

force.

▪ For rough surfaces we assume

that the bodies will not slide

relative to one another no

matter what. In this case the

friction force is always just large

enough to prevent this sliding.

▪ Tension in Cables: Cables, wires or

ropes attached to the body will exert a

tension force on the body in the

direction of the cable. These forces

will always pull on the body, as ropes,

cables and other flexible tethers
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cannot be used for pushing.

▪ The above forces are the most

common, but other forces such as

pressure from fluids, spring forces and

magnetic forces may exist and may act

on the body.

3. Once the forces are identified and added to the

free body diagram, the last step is to label any key

dimensions and angles on the diagram.

Source: Engineering Mechanic, Jacob Moore, et al.

http://wwhttp://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-6_free_body_diagrams/

free_body_diagrams.htmlw.oercommons.org/courses/

mechanics-map-open-mechanics-textbook/view

4.2.2 System FBD

A system free-body diagram is composed of multiple parts, so you

can have multiple ‘levels’ to consider: the system level with all

objects on the same FBD, and a part FBD for each individual part.
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This is especially helpful if you have a more unknowns than

equations when using the equilibrium equations, so you can find

more information by splitting the system up into individual parts.

For the system FBD, you look at the parts combined together

and add only the external forces (gravity, applied, normal, frictional,

spring). When you look at each part separately, you now have to

include the interaction between the objects, replacing a part with

forces (generally 2 forces: vertical and horizontal force).

For example, if there are 2 books stacked on top of each other, you

now need 3 FBDs:

1. a system level FBD with both books,

2. a part FBD for the bottom book with the top book replaced by

arrows (forces)

3. a part FBD for the top book with the bottom book replaced by

arrows (forces)

To make a system FBD:

1. Draw system FBD using unique consistent labels (ie. a letter or

number per part)
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◦ The system should be floating in space with no surface

(such as the floor)

◦ Include coordinate frame

◦ Use only external forces on system FBD (gravity, applied,

normal, frictional, spring).

◦ DO NOT include internal forces

◦ It is especially important to use unique labels, so the top

book forces are labelled 1, and the bottom book forces are

labelled 2 (or T for top and B for bottom, or A and B).

2. Draw a FBD for each part separately & coord frame with equal

and opposite arrows for internal system forces

◦ The part should be floating in space with no surfaces or

other objects

◦ Include a coordinate frame (yes, again! This is to ensure

you didn’t rotate the object).

◦ Copy the external forces onto the part FBD from the

system FBD with the identical labels and arrow directions

◦ Now add internal forces replacing the other object with

force arrows (red arrows)

◦ When you draw the second part FBD, follow the above

bullets for the second object (with label 2 instead of 1,

copying the system level external force labels). Note

though that you use the same labels for the internal forces
from the first part FBD, but the direction is reversed (left

becomes right and up becomes down). Following Newton’s

laws, the objects extert equal and opposite forces on each

other, and should cancel out at the system level, so they

have the same label (magnitude) and opposite directions.

Some tips:

• Differentiate one object from the other through the labels,

using either a letter or number for each part. These same
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labels go on the system level FBD (except for the internal

labels).

• Use the same labels between the part and system FBDs for

external forces. Don’t change the label – that will make the

equations impossible to solve and look like you have more

unknowns.

• Use the same unique labels between the internal forces for the

part FBDs, but in the opposite direction.

• If you know the location of the center of mass, you could

combine the gravitational forces into 1 system level

gravitational force. You could also model the gravitational force

into one force per part acting at the center of mass for each

object. This is the better method if you have to separate the

objects to do the calculations.

4.2.3 Examples

Here are some examples from: http://mechanicsmap.psu.edu/

websites/1_mechanics_basics/1-6_free_body_diagrams/

free_body_diagrams.html

Example 1: Part FBD

The car shown below is moving and then slams on the
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brakes locking up all four wheels. The distance between

the two wheels is 8 feet and the center of mass is 3 feet

behind and 2.5 feet above the point of contact between

the front wheel and the ground. Draw a free body

diagram of the car as it comes to a stop.
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Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-6_free_body_diagrams/pdf/

P3.pdf
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Example 2: Part FBD (a beam)

Imaged adapted. Source: Engineering Mechanics,

Jacob Moore, et al. http://mechanicsmap.psu.edu/

websites/4_statically_equivalent_systems/

4-1_statically_equivalent_systems/images/

equivalentexample.png
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Example 3: System FBD

Two equally sized barrels are being transported in a

hand truck as shown below. Draw a free body diagram of

each of the two barrels.

Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

1_mechanics_basics/1-6_free_body_diagrams/pdf/

P2.pdf

External forces in green, pink, and yellow. Internal forces between
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the cart and barrels (C and A/B) in red and between the barrels

(A & B) in blue. Notice the matching labels for internal forces but

opposing directions. Notice that the coordinate frame has been

rotated consistently in all of the FBDs.

Key Takeaways

Basically: A part free-body diagrams (FBDs) give you a

way to model complicated problem in a simple way with

arrows. Systems FBDs allows you to combine objects and

analyze them separately.

Application: A bat swinging could be modeled as a part

FBD with gravity and multiple applied forces (hands on one

end and the ball on the other). You could model the
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moment the bat and ball are touching using a system FBD.

Looking ahead: You’ll use a FBD in every step 2 in nearly

every homework problem. These are especially helpful with

Equilibrium Equations in the next section.
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4.3 Rigid Body Equilibrium
Equations

We use the equilibrium equations to calculate any unknown forces

& moments using the known forces and values, and the following

equations:

The particle equilibrium equations were covered in section 2.3.

These are:

$$

\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma F_{z}=0

$$

Now for a rigid body where forces are analyzed at different points

on a body, we can take moments into account. There are 3 equations

for 2d and 4 equations for 3d:

Rigid Body-Two Dimensions

$$

\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma M_{O}=0

$$

Rigid Body-Three Dimensions

$$

\begin{gathered}

\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma F_{z}=0 \\

\Sigma M_{x^{\prime}}=0, \Sigma M_{y^{\prime}}=0, \Sigma

M_{z^{\prime}}=0

\end{gathered}

$$

Because these are static bodies, the right side of the equations

equal 0. In dynamics, they will equal the mass times the acceleration

for translation and rotation.
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For a rigid body in static equilibrium, that is a non-

deformable body where forces are not concurrent, the

sum of both the forces and the moments acting on the

body must be equal to zero. The addition of moments

(as opposed to particles where we only looked at the

forces) adds another set of possible equilibrium

equations, allowing us to solve for more unknowns as

compared to particle problems.

Moments, like forces, are vectors. This means that our

vector equation needs to be broken down into scalar

components before we can solve the equilibrium

equations. In a two dimensional problem, the body can

only have clockwise or counter clockwise rotation

(corresponding to rotations about the z axis). This

means that a rigid body in a two dimensional problem

has three possible equilibrium equations; that is, the

sum of force components in the x and y directions, and

the moments about the z axis. The sum of each of these

will be equal to zero.

For a two dimensional problem, we break our one

vector force equation into two scalar component

equations.

$$\sum\vec F=0\\\sum F_x=0\:\sum F_y=0$$

The one moment vector equation becomes a single

moment scalar equation.

$$\sum\vec M=0\\\sum M_z=0$$

If we look at a three dimensional problem we will

increase the number of possible equilibrium equations

to six. There are three equilibrium equations for force,
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where the sum of the components in the x, y, and z

direction must be equal to zero. The body may also have

moments about each of the three axes. The second set

of three equilibrium equations states that the sum of the

moment components about the x, y, and z axes must

also be equal to zero.

We break the forces into three component equations

$$\sum\vec F=0\\\sum F_x=0\:\sum

F_y=0\:\sum F_z=0$$

We break the moments into three component

equations

$$\sum\vec M=0\\\sum M_x=0\:\sum

M_y=0\:\sum M_z=0$$

Finding the Equilibrium Equations:

As with particles, the first step in finding the

equilibrium equations is to draw a free body diagram of

the body being analyzed. This diagram should show all

the force vectors acting on the body. In the free body

diagram, provide values for any of the known

magnitudes, directions, and points of application for the

force vectors and provide variable names for any

unknowns (either magnitudes, directions, or distances).

Next you will need to choose the x, y, z axes. These

axes do need to be perpendicular to one another, but

they do not necessarily have to be horizontal or vertical.
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If you choose coordinate axes that line up with some of

your force vectors you will simplify later analysis.

Once you have chosen axes, you need to break down

all of the force vectors into components along the x, y

and z directions (see the vectors page in Appendix 1

page for more details on this process). Your first

equation will be the sum of the magnitudes of the

components in the x direction being equal to zero, the

second equation will be the sum of the magnitudes of

the components in the y direction being equal to zero,

and the third (if you have a 3D problem) will be the sum

of the magnitudes in the z direction being equal to zero.

Next you will need to come up with the the moment

equations. To do this you will need to choose a point to

take the moments about. Any point should work, but it is

usually advantageous to choose a point that will

decrease the number of unknowns in the equation.

Remember that any force vector that travels through a

given point will exert no moment about that point. To

write out the moment equations simply sum the

moments exerted by each force (adding in pure

moments shown in the diagram) about the given point

and the given axis (x, y, or z) and set that sum equal to

zero. All moments will be about the z axis for two

dimensional problems, though moments can be about x,

y and z axes for three dimensional problems.

Once you have your equilibrium equations, you can

solve these formulas for unknowns. The number of

unknowns that you will be able to solve for will again be

the number or equations that you have.
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/

3-6_equilibrium_equations_rigid_body/

equilibrium_equations_rigid_body.html

Here is a visual example of using the equilibrium equations:

Source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/
4-1_statically_equivalent_systems/images/equivalentexample.png

If we only consider the y (vertical) direction, the 200 lbs pushing

down on the beam must be balanced by the reaction forces pushing
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up. The two reaction forces are equivalent because the forces on

top are balanced evenly between the reaction forces. If they are at

different locations, we use the sum of the moments equation and

the distances of the people to determine the size of the reaction

forces.

Example 1:

The car below has a mass of 1500 lbs with the center

of mass 4 ft behind the front wheels of the car. What are

the normal forces on the front and the back wheels of

the car?
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Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/

3-6_equilibrium_equations_rigid_body/pdf/

EquilibriumEquationsExtended_WorkedProblem1.pdf
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Example 2:

While sitting in a chair, a person exerts the forces in

the diagram below. Determine all forces acting on the

chair at points A and B. (Assume A is frictionless and B is

a rough surface).
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Source: Engineering Mechanics, Jacob Moore et al.,

http://mechanicsmap.psu.edu/websites/

3_equilibrium_rigid_body/

3-6_equilibrium_equations_rigid_body/pdf/

EquilibriumEquationsExtended_WorkedProblem5.pdf
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Key Takeaways

Basically: The equilibrium equations for rigid bodies are a

way to determine unknown forces and moments using

known forces and moments, separating the motion in 2 (or

3) directions for translation and rotation. Moments could

be calculated because rigid bodies also consider shape and

length.

Application: Calculate the reaction forces from the

combined weight of an object.

Looking Ahead: This method will be used extensively in

Ch 5 and 6.

258 | Statics



4.4 Friction and Impending
Motion

Dry Friction

Dry friction is the force that opposes one solid

surface sliding across another solid surface. Dry friction

always opposes the surfaces sliding relative to one

another and can have the effect of either opposing

motion or causing motion in bodies.

The most commonly used model for dry friction

is coulomb friction. This type of friction can further be

broken down into static friction and kinetic friction.

These two types of friction are illustrated in the diagram

below. First imagine a box sitting on a surface. A pushing

force is applied parallel to the surface and is constantly

being increased. A gravitational force, a normal force,

and a frictional force are also acting on the box.
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Static friction occurs prior to the box slipping and

moving. In this region the friction force will be equal in

magnitude and opposite in direction to the pushing

force itself. As the magnitude of the pushing force

increases so does the magnitude of the friction force.

If the magnitude of the pushing force continues to

rise, eventually the box will begin to slip. As the box

begins to slip the type of friction opposing the motion of

the box changes from static friction to what is called

kinetic friction. The point just before the box slips is

known as impending motion. This can also be thought

of as the maximum static friction force before slipping.

The magnitude of the maximum static friction force is

equal to the static coefficient of friction times the

normal force existing between the box and the surface.

This coefficient of friction is a property that depends on

both materials and can usually be looked up in tables.

Kinetic friction occurs beyond the point of

impending motion when the box is sliding. With kinetic
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friction, the magnitude of the friction force opposing

motion will be equal to the kinetic coefficient of friction

times the normal force between the box and the

surface. The kinetic coefficient of friction also depends

upon the two materials in contact, but will almost

always be less than the static coefficient of friction.

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/dryfriction.html

Slipping vs. Tipping

Imagine a box sitting on a rough surface as shown in

the figure below. Now imagine that we start pushing on

the side of the box. Initially the friction force will resist

the pushing force and box will sit still. As we increase

the force pushing the box however, one of two things

will occur.

1. The pushing force will exceed the maximum

static friction force and the box will begin to slide

across the surface (slipping).

2. Or, the pushing force and the friction force will

create a strong enough couple that the box will

rotate and fall on it’s side (tipping).
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When we look at cases where either slipping or

tipping may occur, we are usually interested in finding

which of the two options will occur first. To determine

this, we usually determine both the pushing force

necessary to make the body and the pushing force

necessary to make the body tip over. Whichever option

requires less force is the option that will occur first.

Determining the Force Required to Make an Object
“Slip”:

A body will slide across a surface if the pushing force

exceeds the maximum static friction force that can exist

between the two surfaces in contact. As in all dry

friction problems, this limit to the friction force is equal

to the static coefficient of friction times the normal

force between the body. If the pushing force exceeds

this value then the body will slip.
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Determining the Force Required to Make an Object
“Tip”:

The normal forces supporting bodies are distributed

forces. These forces will not only prevent the body from

accelerating into the ground due to gravitational forces,

but they can also redistribute themselves to prevent a

body from rotating when forces cause a moment to act

on the body. This redistribution will result in the

equivalent point load for the normal force shifting to

one side or the other. A body will tip over when the

normal force can no longer redistribute itself any

further to resist the moment exerted by other forces

(such as the pushing force and the friction force).
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The easiest way to think about the shifting normal

force and tipping is to imagine the equivalent point load

of the distributed normal force. As we push or pull on

the body, the normal force will shift to the left or right.

This normal force and the gravitational force create a

couple that exerts a moment. This moment will be

countering the moment exerted by the couple formed

by the pushing force and the friction force.

Because the normal force is the direct result of

physical contact, we cannot shift the normal force

beyond the surfaces in contact (aka. the edge of the

box). If countering the moment exerted by the pushing

force and the friction force requires shifting the normal

force beyond the edge of the box, then the normal force

and the gravity force will not be able to counter the

moment and as a result the box will begin to rotate (aka.

tip over).
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/7_friction/

7-2_slipping_vs_tipping/slippingvstipping.html

Example 1

The box shown below is pushed as shown. If we keep increasing the
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pushing force, will the box first begin to slide or will it tip over?

Therefore, the box will TIP first.

Source: Gayla Cameron.

Example 2:

A 500 lb box is sitting on concrete floor. If the static

coefficient of friction is .7 and the kinetic coefficient of

friction is .6:

• What is the friction force if the pulling force is

150 lbs?

• What pulling force would be required to get the

box moving?

• What is the minimum force required to keep the

box moving once it has started moving?
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/pdf/

DryFriction_WorkedExample1.pdf

Example 3:

A 30 lb sled is being pulled up an icy incline of 25
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degrees. If the static coefficient of friction between the

ice and the sled is .4 and the kinetic coefficient of

friction is .3, what is the required pulling force needed

to keep the sled moving at a constant rate?
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/pdf/

DryFriction_WorkedExample2.pdf
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Example 4:

A plastic box is sitting on a steel beam. One end of the

steel beam is slowly raised, increasing the angle of the

surface until the box begins to slip. If the box begins to

slip when the beam is at an angle of 41 degrees, what is

the static coefficient of friction between the steel beam

and the plastic box?
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/7_friction/

7-1_dry_friction/pdf/

DryFriction_WorkedExample3.pdf
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Example 5: Slipping vs Tipping

Explanation: If it’s tipping, all of the normal force will be at the

corner. If it starts slipping, it must overcome the static frictional

force. Comparing the pushing force needed to tip or slip, the

pushing force is lower to cause tipping occurs than the pushing

force to cause slipping, there fore it will tip first.

The box shown below is pushed as shown. If we keep

increasing the pushing force, will the box first begin to

slide or will it tip over?
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/7_friction/

7-2_slipping_vs_tipping/pdf/

TippingVsSlipping_WorkedExample1.pdf

Key Takeaways

Basically: Friction always opposes motion. The coefficient
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of static friction is always higher than the coefficient of

kinetic friction.

Application: Slipping and tipping are interesting cases

looking at friction. Depending on the mass, the height of

the applied force, and the frictional surface, you can

calculate whether the object will tip or slip first.

Looking Ahead: This will become important in Dynamics.
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4.5 Examples

Here are examples from Chapter 4 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to the author eosgood@upei.ca.

Example 4.5.1: External Forces, submitted by
Elliott Fraser

1. Problem

Billy (160 lbs), Bobby (180 lbs), and Joe (145

lbs) are walking across a small bridge with a

length of 11 feet. Both sides of the bridge are

supported by rollers. Billy is 2 feet along the

bridge whereas Joe is 9 feet along the bridge.

If the maximum force that the left side of the

bridge can withstand without failing is 225

lbs, where along the bridge can Bobby stand?

Real-life scenario:
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Source: https://www.flickr.com/photos/chumlee/
48306801162/

2.Draw

Sketch:
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Free-body diagram:

3. Knowns and Unknowns

Known:

• rBi = 2 ft

• rJ = 9 ft

• rB = 11 ft

• FBi = 160 lb

• FJ = 145 lb
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• FBo = 180 lb

• Ay = 225 lb (since this is the maximum force

without failure)

Note: Since the mass of the bridge was not given, we

assume it is negligible and ignore it for this question.

Unknown: rBo

4. Approach

Use equilibrium equations ( [latex]\sum\

underline{F}=0[/latex] , [latex]\sum\

underline{M}=0[/latex] . Use sum of forces in y to find

By; use sum of moments to find where Bobby can stand.

Solve for x.

5. Analysis

$$ \sum F_y=0=-F_{Bi}-F_{Bo}-

F_J+A_y+B_y\\\\B_y=F_{Bi}+F_{Bo}+F_J-

A_y\\\\B_y=160 lb+180 lb+145 lb-225

lb\\\\\\B_y=260 lb$$

$$\sum M_A=0=-(F_{Bi})(r_{Bi})-(F_{Bo})(r_{Bo})-

(F_{J})(r_{J})+(B_{y})(r_{B})\\r_{bo}=\frac{-

(F_{Bi})(r_{Bi})-

(F_{J})(r_{J})+(B_{y})(r_{B})}{F_{Bo}}\\r_{Bo}=\frac{-

(160 lb)(2 ft)-(145 lb)(9 ft)+(260 lb)(11 ft)}{180 lb}$$

$$\underline{r_{Bo}=6.86 ft}$$

6. Review

Bobby can stand anywhere from 6.8611 ft – 11 ft from A
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with no problems. If Bobby were to stand between 0 ft

and 6.811 ft, the left side of the bridge would fail.

Example 4.5.2: Free-Body Diagrams,
submitted by Victoria Keefe

1. Problem

A box is sitting on an inclined plane (θ =

15°) and is being pushed down the plane with

a force of 20 N. Draw the free body diagram

for the box, while it is in static equilibrium.
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2. Draw

3. Knowns and Unknowns

θ = 15°

FA

Unknowns: free-body diagram of box

4. Approach
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Draw the box, then draw all forces acting on it

5. Analysis

6. Review

All forces acting upon the box are drawn, including

weight/gravitational force, normal force, friction, and

applied forces.
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Man Kicking Box

Icons - Download Free

Vector Icons | Noun

Project
Source:
https://static.thenounproj
ect.com/png/
2745226-200.png

Example 4.5.3: Friction, submitted by
Deanna Malone

1. Problem

A box is being

pushed along level

ground with a force

of 150 N at an angle

of 30 with the

horizontal. The

mass of the box is 12

kg.

a) What is the normal force between the

box and the floor?

b) What is the coefficient of friction

between the box and the floor?

2. Draw

Sketch:
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Free Body Diagram:

3. Knowns and Unknowns

Knowns:

• FA = 150 N

• θ = 30°

• m = 12 kg

Unknowns: FN, μ
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4. Approach

Use equilibrium equations ( [latex]\sum\

underline{F}=0[/latex] , [latex]\sum\

underline{M}=0[/latex] ), SOH CAH TOA, friction

equation

5. Analysis

Part a:

Find Fg:

$$Fg=m\cdot g\\Fg=(12kg)(9.81m/

s^2)\\\\Fg=117.72N$$

Find FN using equilibrium equations:

$$\sum Fy=0=F_N-F_g-F_A\sin

30^{\circ}\\0=F_N-117.72N-150N\cdot \sin

30^{\circ}\\F_N=117.72+150N\cdot\sin

30^{\circ}\\\\\underline{F_N=192.7 N}$$

Part b:

Find two equations for Ff, set equal, solve for μ

$$\sum F_x=0=F_A\cos 30^{\circ} -F_f\\0=150N\

cdot\cos 30^{\circ}-F_f$$

$$F_f=150N\cdot\cos 30^{\circ}\\F_f=M\cdot

F_N\\150N\cdot\cos 30^{\circ}=\mu\cdot F_N$$

$$\mu=\frac{150N\cdot\cos

30^{\circ}}{F_N}\\\mu=\frac{150N\cdot\cos

30^{\circ}}{192.72N}=0.67405$$

$$\underline{\mu=0.67}$$

6. Review
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FN, Fg, and the y component of FA are the only forces

in the y direction so it makes sense that they need to

equal zero for the equilibrium equations. FN is the only

positive force in the y direction, so it makes sense that it

equals the magnitude of the other two put together.

The coefficient found between the box and the floor

is reasonable as it is less than 1, and it’s reasonable for a

box on the floor. For example, if the box was wood and

the floor was wood, the coefficient of static friction

would be anywhere from 0.5-0.7, so having a coefficient

of friction being equal to 0.67 makes sense.

Example 4.5.4: Friction, submitted by
Dhruvil Kanani

1. Problem
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A person is trying to prevent a brick from

sliding on a rough vertical surface by

applying force in the direction of wall.

Assuming the coefficient of static friction is

0.49 and mass of the brick is 5 kg,

• a) Determine the minimum force

required to prevent the brick from

slipping.

• b) Find the distributed load or

intensity if the length of the person’s

hands from the tip of his fingers to

their wrist is 16 cm.
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2. Draw

Sketch:

Free-body diagram (box):

Free-body diagram (distributed load):

3. Knowns and Unknowns

Knowns:

• Mass of brick (m) = 5kg

• Coefficient of friction (μ1) = 0.49
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• Acceleration due to gravity (g) = 9.8m/s2

• Length of the hand (L) = 16 cm

Unknowns:

Applied force (FA), intensity (w)

4. Approach

Use equilibrium equations ( [latex]\sum\

underline{F}=0[/latex] , [latex]\sum\

underline{M}=0[/latex] ), equations for Fg and Ff (see

below).

$$F_g=m g\\F_f=\mu F_N$$

5. Analysis

Part a:

$$F_g=m\cdot g\\F_g=5kg\cdot 9.81m/

s^2\\F_g=49.05N$$

$$\sum F_y=0=-

F_g+F_f\\F_f=F_g\\F_f=49.05N$$

$$F_f=\mu_1

F_N\\F_N=\frac{F_f}{\mu_1}\\F_N=\frac{49.05N}{0

.49}$$

$$\underline{F_N=100.1N}$$

Part b:

$$\sum F_x=0=F_N-

F_A\\F_A=F_N\\F_A=100.1N$$

290 | Statics



$$w=\frac{F}{L}\\w={100.1N}{(16cm\times\

frac{1m}{100cm})}$$

$$\underline{w=625N/m}$$

6. Review

It makes sense that the applied force is larger than the

gravitational force. It also makes sense that the normal

and applied forces are equal, since they are the only

forces in the x direction (same goes for the friction and

gravitational forces).

Example 4.5.5: Friction, submitted by Emma
Christensen

1. Problem
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A ball is suspended by two ropes, and rests

on an inclined surface with angle 15°. Rope A

pulls on the ball with force 200 N, and rope B

has force 150 N. They each have angles of 20°

and 60° from the inclined surface plane, as

shown in the image below.

a) Draw a free-body diagram of the ball

b) Find the friction force

2. Draw

Sketch:
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3. Knowns and Unknowns

• θA = 20°

• θB = 60°

• θC = 15°

• m = 20 kg

• FA = 200 N

• FB = 150 N

Unknowns: Ff

4. Approach

Draw the ball, then add forces. Use equilibrium

equations ( [latex]\sum\underline{F}=0[/latex] ,

[latex]\sum\underline{M}=0[/latex] ) to find the

friction force.

5. Analysis

Part a:
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Part b:

Step 1: find FG

$$F_G=m g\\F_G=20kg\cdot 9.81m/

s^2\\F_G=196.2N$$

Step 2: Find the x-component of FG
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$$F_{GX}=F_G\sin(15^{\circ})\\F_{GX}=196.2N\

cdot\sin(15^{\circ})\\F_{GX}=50.78N$$

Step 3: Find the x-component of FA

$$\cos(20^{\circ})=\frac{F_A}{F_{AX}}\\F_{AX}=\fr

ac{F_A}{\cos(20^{\circ})}\\F_{AX}=\frac{200N}{\cos(

20^{\circ})}\\F_{AX}=212.8N$$

Step 4: Find the x-component of FB

$$F_{BX}=F_B\cos(60^{\circ})\\F_{BX}=150N\

cos(60^{\circ})\\F_{BX}=75N$$

Step 5: Sum forces in the x-direction to find the

frictional force
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$$\sum F_x=0=-F_f+f_{BX}-F_{AX}+F_{GX}\\F_f=-

F_{AX}+F_{BX}+F_{GX}\\F_f=-212.8N+75N-50.78N$$

$$\underline{F_f=-87.02N}$$

Because the frictional force is negative, that means

the frictional force actually acts in the opposite

direction, so the friction is keeping the ball from going

up the plane.

6. Review

The units of Ff are newtons, which makes sense

because it is a force. It also makes sense that FAx is

larger than FGx and FBx.
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CHAPTER 5: TRUSSES

This chapter will introduce you to a special type of structure called

a ‘truss’. You’ll analyze these structures more in your Structures

course, but for Statics you will need to know how to calculate the

force in each member, using two methods: method of joints and

method of sections. At first this might seem confusing, but there is

something quite elegant and magical about the method once you

understand it. Here are the sections in this Chapter:

• 5.1 Trusses Introduction – what are trusses?

• 5.2 Method of Joints – one method of finding the forces in the

truss

• 5.3 Method of Sections– another method to find the forces in

the truss

• 5.4 Zero-Force Members – how to identify members with no

forces

• 5.5 Examples – Examples from your peers

Here are the important equations for this chapter:
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5.1 Trusses Introduction

Trusses are rigid structures made up of two-force members, which

are objects with exactly two forces/connections. Trusses are

commonly found in the frame of a roof and the sides of a bridge:

Source:Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/5_structures/5-1_structures/
structures.html
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Image Source: Billbeee at English Wikipedia. – Transferred from en.wikipedia
to Commons., CC BY-SA 3.0,

You’ll analyze these structures more in your Structures course, but

for Statics you will need to know how to calculate the force in

each member, using two methods: method of joints and method of

sections. Method of joints is more like a particle analysis wherein

you use only x and y equilibrium equations. Method of sections

is more like a rigid body analysis where you can also include the

moment equilibrium equation. Those are in the next sections.

5.1.1 Two Force Members

Before we discuss the structure of trusses, we must begin with

defining two force members:

A two force member is a body that has forces (and
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only forces, no moments) acting on it in only two

locations. In order to have a two force member in static

equilibrium, the net force at each location must be

equal, opposite, and collinear. This will result in all two

force members being in either tension or compression

as shown in the diagram below.

Imagine a beam where forces are only exerted at each

end of the beam (a two force member). The body has

some non-zero force acting at one end of the beam,

which we can draw as a force vector. If this body is in

equilibrium, then we know two things: 1) the sum of the

forces must be equal to zero, and 2) the sum of the

moments must be equal to zero.

In order to have the sum of the forces equal to zero,

the force vector on the other side of the beam must be

equal in magnitude and opposite in direction. This is the

only way to ensure that the sum of the forces is equal to

zero with only two forces.

In order to have the sum of the moments equal to

zero, the forces must be collinear. If the forces were not

5.1 Trusses Introduction | 301



collinear, then the two equal and opposite forces would

form a couple. This couple would exert a moment on the

beam when there are no other moments to counteract

the couple. Because the moment exerted by the two

forces must be equal to zero, the perpendicular distance

between the forces (d) must be equal to zero. The only

way to achieve this is to have the forces be collinear.

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-1_structures/structures.html
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Adapted from image by
ToddC4176 CC-BY-SA 3.0

5.1.2 Trusses

A truss is an

engineering structure

that is made entirely

of two force members. In

addition, statically

determinate trusses

(trusses that can be

analyzed completely

using the equilibrium

equations), must

be independently rigid. This means that if the truss was

separated from its connection points, no one part would

be able to move independently with respect to the rest

of the truss.

When we talk about analyzing a truss, we are usually

looking to identify not only the external forces acting on

the truss structure, but also the forces acting on each

member internally in the truss. Because each member of

the truss is a two force member, we simply need to

identify the magnitude of the force on each member,

and determine if each member is in tension or

compression.

To determine these unknowns, we have two methods

available: the method of joints, and the method of
sections. Both will give the same results, but each

through a different process.

The method of joints focuses on the joints, or the
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connection points where the members come together.

We assume we have a pin at each of these points that we

model as a particle, we draw out the free body diagram

for each pin, and then write out the equilibrium

equations for each pin. This will result in a large number

of equilibrium equations that we can use to solve for a

large number of unknown forces.

The method of sections involves pretending to split

the truss into two or more different sections and then

analyzing each section as a separate rigid body in

equilibrium. In this method we determine the

appropriate sections, draw free body diagrams for each

section, and then write out the equilibrium equations

for each section.

The method of joints is usually the easiest and fastest

method for solving for all the unknown forces in a truss.

The method of sections on the other hand is better

suited to targeting and solving for the forces in just a

few members without having to solve for all the

unknowns. In addition, these methods can be combined

if needed to best suit the goals of the problem solver.

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-3_trusses/trusses.html

Here are common types of bridge trusses:
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Source: https://eng.libretexts.org/Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/
1.05%3A_Internal_Forces_in_Plane_Trusses

Here are common types of roof trusses:

Source: https://eng.libretexts.org/Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/
1.05%3A_Internal_Forces_in_Plane_Trusses
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5.1.3 Parts of a Truss

A truss is composed of:

• joints

• members, and

• external forces (reaction forces and applied forces).

The joints are often labelled with a letter and are where the

external forces and members connect.

Here is an example of just the joints without the members:
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-4_method_of_joints/methodofjoints.html

The members are the metal or wooden beams that are labelled

with the connection between joints. For example member AB

connects joints A and B.
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The external forces are the reaction forces and the applied forces.

The applied forces come from the load distributed across the bridge

or from the roof.

The applied force / load from trucks and cars goes from the deck,

to the stringers, across the beams, to the joints of the truss where it

is carried as applied (external) forces on the edges of the bridge.
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Image annotated from original source: https://upload.wikimedia.org/
wikipedia/en/2/25/Nine_stringers%2C_2_floorbeams.jpg

Here is a second type of structure. Which are the stringers and

which are the beams?
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Annotations added from original image source: https://www.maxpixel.net/
static/photo/1x/
Buildings-Leaves-Park-Autumn-Road-Fall-Structure-5623840.jpg

.

.

.

.

.

.

Any ideas?

.

.

.

.

.

Here’s the answer!
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Annotations added from original source: https://www.maxpixel.net/static/
photo/1x/Buildings-Leaves-Park-Autumn-Road-Fall-Structure-5623840.jpg

Here are some examples on how to convert the reaction forces /

moments for a truss. Note: these are the same as in section 3.4.
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Source: Internal Forces in Beams and Frames,

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/1.05%3A_Internal_Forces_in_Plane_Trusses

5.1.4 Tension & Compression

The two-force members carry internal forces in either tension or

compression between the joints. One standard sign convention is to

assume all members are in tension, labelled as positive (+), then any

negative number (-) means the member is in compression.
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Source: https://www.flickr.com/photos/121935927@N06/13580545445

Following Newton’s 3rd law regarding equal and opposite reactions,

when there is tension in a member, there is also tension in a joint.

Pulling on the member (tension) in turn pulls on the joint. Similarly,

pushing on a member (compression) pushes on the joint as well.

Similarly, the force from member AB (Fab) is distributed from joint

a through member ab to joint b. Shown here in compression, Fab

is negative. The magnitude of Fab on joint a is the same as the

magnitude on joint b, even though they are pointing two different

directions (hence equal and opposite). Member bc will have a

different magnitude.
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When you look at each joint, compression (-) appears to be

pushing on the joint while tension (+) is pulling on it with the force

named for the member ( Fab ).

In the next section, we will discuss each of these methods in

greater detail and how to solve problems using them.

Key Takeaways
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Basically: A truss is a rigid structure composed of two

force members (where forces are applied at only two

locations) that connect at joints and have external forces

applied. The internal forces of the truss put members in

compression (-) or tension (+).

Application: The frame of a roof is often composed of a

wooden truss, and trusses are commonly found in wooden

and metal bridges.

Looking Ahead: The next two sections discuss the method

for calculating the force in the members & you’ll talk about

trusses more in your Structures course.
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5.2 Method of Joints

The method of joints is a form of particle analysis. After solving for

the reaction forces, you solve for the unknown forces at each joint

until you have found the value of each member. You start with your

model:

Convert the constraints into reaction forces with the appropriate

labels:

Now solve for the reaction forces (Rax Ray Re) looking only at the

external forces using the equilibrium equations for a rigid body:

$$\sum F_x=0\\\sum F_y=0\\\sum M=0$$

Assuming the length of each member is L:

$$\sum F_x=R_{ax} = 0, \\\underline{R_{ax} = 0}$$
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$$\sum F_y=R_{ay}+R_e – F_g – F_f= 0, \\R_{ay} +R_e = 150

lb$$

$$\sum M_a= -L*F_g – 2L * F_f+3L*R_e = 0\\R_e = \frac{100L

+ 100L}{3L}\\\underline{R_e =66.7 lb} $$

$$ R_{ay} = 150 lb – 66.7 lb\\ \underline{ R_{ay}= 83.3 lb }$$

Next, pick a joint where there are 2 or fewer unknown values such

as a or e. This is because you only have 2 equations available to find

the unknowns: [latex]\sum F_x=0 \text{, } \sum F_y=0[/latex].

The following table shows the number of known and unknown

forces at each joint.

Joint: a b c d e f g

Known
forces: 2 0 0 0 1 1 1

Unknown
forces: 2 3 4 3 2 4 4

Choosing joint a (or e), do a particle analysis, assuming all of the

members are in tension. That way, if the force is negative, that

means it is in compression. Notice Rax has been excluded because it

is equal to zero.

$$\sum F_y=0\\R_{ay}+F_{ab}sin(60^\circ) = 0\\F_{ab}=-
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\frac{R_{ay}}{sin(60^\circ}=-\frac{83.7 \text{ lb}}{ 0.866}

\\\underline{F_{ab} = – 96.2 \text{ lb}} \text{(compression)}$$

$$\sum F_x=0\\F_{ag} + F_{ab}cos(60^\circ) = 0 \\F_{ag} =-

F_{ab}cos(60^\circ) = – (-96.2 \text{ lb}) * (0.5) \\

\underline{F_{ag} = + 48.1 \text{ lb}} \text{(tension)}$$

Next move to joint b because you now only have 2 unknowns now

at joint b (Fbc and Fbg).

Keep analyzing joints until you’ve calculated the load in all

members:

Member ab bc cd de ef fg ag bg cg cf df

Force (lb) 96.2 96.2 77.0 77.0 38.5 86.6 48.1 96.2 19.3 19.3 77.0

Tension or
Compression C C C C T T T T T C T

And that’s it! If you don’t specify compression or tension, you should

use positive and negative to denote tension and compression,

respectively.

Here is a second explanation on how to solve using method of

joints:
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The method of joints is a process used to solve for the

unknown forces acting on members of a truss. The

method centers on the joints or connection points

between the members, and it is usually the fastest and

easiest way to solve for all the unknown forces in a truss

structure.

Using This Method:

The process used in the method of joints is outlined

below:

1. In the beginning it is usually useful to label the

members and the joints in your truss. This will

help you keep everything organized and

consistent in later analysis. In this book, the

members will be labeled with letters and the joints

will be labeled with numbers.

2. Treating the entire truss structure as a rigid
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body, draw a free body diagram, write out the

equilibrium equations, and solve for the external

reacting forces acting on the truss structure. This

analysis should not differ from the analysis of a

single rigid body.

3. Assume there is a pin or some other small

amount of material at each of the connection

points between the members. Next you will draw a

free body diagram for each connection point.

Remember to include:

◦ Any external reaction or load forces that

may be acting at that joint.

◦ A normal force for each two force

member connected to that joint. Remember

that for a two force member, the force will

be acting along the line between the two

connection points on the member. We will

also need to guess if it will be a tensile or a

compressive force. An incorrect guess now

though will simply lead to a negative

solution later on. A common strategy then is
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to assume all forces are tensile, then later in

the solution any positive forces will be

tensile forces and any negative forces will be

compressive forces.

◦ Label each force in the diagram. Include

any known magnitudes and directions and

provide variable names for each unknown.

4. Write out the equilibrium equations for each of
the joints. You should treat the joints as particles,

so there will be force equations but no moment

equations. This should give you a large number of

equations.

◦ The sum of the forces in the x direction

will be zero and the sum of the forces in the

y direction will be zero for each of the

joints.$$\sum\vec F=0\\\sum

F_x=0\:\sum F_y=0$$

5. Finally, solve the equilibrium equations for the

unknowns. You can do this algebraically, solving

for one variable at a time, or you can use matrix
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equations to solve for everything at once. If you

assumed that all forces were tensile earlier,

remember that negative answers indicate

compressive forces in the members.

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-4_method_of_joints/methodofjoints.html

Additional examples from the Engineering Mechanics webpage:

Example 1:

Find the force acting in each of the members in the

truss bridge shown below. Remember to specify if each

member is in tension or compression.
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Solution:
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-4_method_of_joints/pdf/

MethodOfJoints_WorkedExample1.pdf
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Example 2:

Find the force acting in each of the members of the truss shown

below. Remember to specify if each member is in tension or

compression.

Solution here.

In summary:
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Key Takeaways

Basically: Method of joints is an analysis technique to find

the forces in the members of a truss. It looks at each joint

individually using the particle equilibrium equations.

Application: To calculate the loads on bridges and roofs,

especially if you need to know all of the values of the

members.

Looking Ahead: The next section explores a method to
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solve one or two members of a truss (instead of finding all

of them).
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5.3 Method of Sections

The method of sections uses rigid body analysis to solve for a specific

member or two. Instead of looking at each joint, you make a cut

through the truss, turning the members along that line into internal

forces (assume in tension). Then you solve the rigid body using the

equilibrium equations for a rigid body: [latex]\sum F_x=0\;\sum

F_y=0\;\sum M_z=0[/latex]

The truss:

Source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/5_structures/
5-5_method_of_sections/methodofsections.html

is split into two to solve for FE.
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Source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/5_structures/
5-5_method_of_sections/methodofsections.html

For this example, you could choose the right half or left half. For

some problems, being strategic is necessary otherwise you need to

make multiple cuts. In this problem you had to solve for the reaction

forces first, but that isn’t always the case as you can sometimes just

make the cut (see example 2 below).

Here are more examples of how to make a cut and showing the

naming convention:
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Source: Internal Forces in Beams and Frames,

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/1.05%3A_Internal_Forces_in_Plane_Trusses
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Here is a detailed explanation:

The method of sections is a process used to solve for

the unknown forces acting on members of a truss. The

method involves breaking the truss down into individual

sections and analyzing each section as a separate rigid

body. The method of sections is usually the fastest and

easiest way to determine the unknown forces acting in a

specific member of the truss.

Using This Method:

The process used in the method of sections is

outlined below:

1. In the beginning it is usually useful to label the

members in your truss. This will help you keep

everything organized and consistent in later

analysis. In this book, the members will be labeled

with letters.
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2. Treating the entire truss structure as a rigid

body, draw a free body diagram, write out the

equilibrium equations, and solve for the external

reacting forces acting on the truss structure. This

analysis should not differ from the analysis of a

single rigid body.

3. Next you will imagine cutting your truss into

two separate sections. The cut should travel

through the member that you are trying to solve

for the forces in, and should cut through as few

members as possible (The cut does not need to be

a straight line).
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4. Next you will draw a free body diagram for

either one, or both sections that you created. Be

sure to include all the forces acting on each

section.

◦ Any external reaction or load forces that

may be acting at the section.

◦ An internal force in each member that was

cut when splitting the truss into sections.

Remember that for a two force member, the

force will be acting along the line between

the two connection points on the member.

We will also need to guess if it will be a

tensile or a compressive force. An incorrect

guess now though will simply lead to a

negative solution later on. A common

strategy then is to assume all forces are

tensile, then later in the solution any

positive forces will be tensile forces and any

negative forces will be compressive forces.

◦ Label each force in the diagram. Include
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any known magnitudes and directions and

provide variable names for each unknown.

5. Write out the equilibrium equations for each

section you drew a free body diagram of. These

will be extended bodies, so you will need to write

out the force and the moment equations.

◦ You will have three possible equations for

each section, two force equations and one

moment equation.$$\sum\vec F=0\; \;

\sum\vec M=0\\\sum F_x=0\; \; \sum

F_y=0\; \; \sum M_z=0$$

6. Finally, solve the equilibrium equations for the

unknowns. You can do this algebraically, solving

for one variable at a time, or you can use matrix

equations to solve for everything at once. If you

assumed that all forces were tensile earlier,

remember that negative answers indicate

compressive forces in the members.
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Source:Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-5_method_of_sections/methodofsections.html

Additional examples from the Engineering Mechanics webpage:

Example 1:

Find the forces acting on members BD and CE. Be

sure to indicate if the forces are tensile or compressive.
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-5_method_of_sections/pdf/

MethodOfSections_WorkedExample1.pdf

Example 2:

Find the forces acting on members AC, BC, and BD of

the truss. Be sure to indicate if the forces are tensile or

compressive.
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If we make a cut in the top section, we don’t need to

solve for the reaction forces.
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Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/5_structures/

5-5_method_of_sections/pdf/

MethodOfSections_WorkedExample2.pdf

Even more examples are available at: https://eng.libretexts.org/

Bookshelves/Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.05%3A_Internal_Forces_in_Plane_Trusses

In summary:
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Key Takeaways

Basically: Method of sections is an analysis

technique to find the forces in some members of a

truss. It separates the truss into two sections then

uses the rigid body equilibrium equations.

Application: To calculate the loads on bridges and

5.3 Method of Sections | 343



roofs, especially if you need to know only one or

two of the members.

Looking Ahead: The next section explores a trick

that makes solving faster, especially for method of

joints.
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5.4 Zero-Force Members

This is a special case that is specially useful for method of joints and

method of sections. These special types of members called zero-
force members ensure the truss stays in a particular shape as a rigid

body, but carries no load.

Zero-force members are members that you can tell just by

inspection that they carry no load. They are important to the

structure to ensure it stays in a rigid shape.

Zero-force members can be found considering the equilibrium

equations. Look at joint e below. In the y direction, there is only

1 force: Feh. So if the sum of the forces in the y direction $latex

\sum F_{eh} = Feh = 0, then Feh = 0. Similarly, Fmk and Fcp are zero-

force members (if you look at joint m and c). Note that if you looked

at joint k or p, you couldn’t tell that Fmk and Fcp are zero-force

members.

5.4 Zero-Force Members | 345



Adapted from original source: https://demo.webwork.rochester.edu/
webwork2_files/tmp/daemon_course/images/
4cbba3a2-d72c-3d22-bba6-f6856747dafd___50b8ddcf-dab2-3209-b817-0ab27
426a1d4.png

There isn’t a huge problem if you can’t find zero-force members just

from inspection, but you might find that certain joints are not able

to be solved as easily. (Zero-force members let you have one less

unknown).
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Also see that L and G have no zero-force members because the

externally applied loads balance the members.

Here are some examples to practice on:

Example 1

Source: https://commons.wikimedia.org/wiki/File:Camelback-truss.svg

(I count 3 zero-force members, assuming there are no loads on

the bridge at the joints).

Example 2

Source: https://commons.wikimedia.org/wiki/File:Bowstring-truss.svg
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(I count 1 zero-force member, assuming there are no loads on the

bridge at the joints).

Example 3

Source: https://pxhere.com/en/photo/995729

(Looking at only 1 side of the bridge, in theory there are 7 zero-

force members, but because there is a load on the deck it is more

likely that all of them would be carrying a load).

Admittedly, zero-force members are more theoretical than actual.
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Key Takeaways

Basically: Zero-force members are two-force members

that do not carry any load but help keep the structure into

a certain shape.

Application: In trusses.

Looking ahead: We will talk about this again in sections 1.3

on vectors and in section 1.4 and 1.5 on dot products and

cross products.
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5.5 Examples

Here are examples from Chapter 5 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to the author eosgood@upei.ca.

Example 5.5.1: Method of Sections –
Submitted by Riley Fitzpatrick

1. Problem

A flower cart at a local garden center is

being pushed with a force of 500 n at joint G.

It’s back wheels (A) are locked so it is not

moving. There is 1 meter of space between

each of the four shelves in height and each

shelf is four meters long.

a) Calculate the reaction forces of the

locked wheels and the unlocked wheels.
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b) Calculate the load carried by FCG, and

whether it is in tension or compression

Which method did you use, joints or

sections? Which is faster for the style of

questions? How would your strategy change

if your were calculating the load in each

member?

Source: https://flic.kr/p/txjSpP

5.5 Examples | 351



2. Draw

Sketch:
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Free-body Diagram:

3. Knowns and Unknowns

Known:

• P = 500 N
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• Width = 4 m

• Total height = 3 m

Unknowns: RAx, RAy, RBy, FCG

4. Approach

Part a: determine reaction forces using equilibrium

equations

Part b: calculate FCG using method of sections. Make a

cut, then solve internal forces using equilibrium

equations

5. Analysis

Part a:

Solving for RAx:

$$\sum F_x=0=P-

R_{Ax}\\R_{Ax}=P\\R_{Ax}=500N$$

Solving for RBy:

$$\sum M_A=0=(r_{BA}\cdot R_{By})-(r_{GA}\cdot

P)\\r_{BA}\cdot R_{By}=r_{GA}\cdot

P\\R_{By}=\frac{r_{GA}\cdot

P}{r_{BA}}\\R_{By}=\frac{2m\cdot

500N}{4m}\\R_{By}=250N$$

Solving for RAy:

$$\sum F_y=0=R_{By}+R_{Ay}\\R_{Ay}=-

R_{By}\\R_{Ay}=-250N$$

The answer we got is a negative number. All this

means is that the direction of this vector is drawn wrong

on our original diagram (in reference to our coordinate
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frame). This makes sense as RAy and RBy are the only

external forces in the y direction, so they have to cancel

each other for the equilibrium equations to be true.

Therefore, one of them should have a negative direction.

We will leave this answer as is for now, but the next time

we draw the system, we will change the direction of the

arrow.

$$ \underline{R_{Ax}=500N,\; R_{Ay}=-250N, \;

R_{By}=250N}$$

Part b:

Firstly, we re-draw the diagram, changing the

direction of RAy. Then, since we are using method of

sections, we make a cut so that the member FCG (the

one we want to find) is cut.

Now we re-draw, choosing one of the pieces from the

cut. Here the top half is chosen, but you could also

chose the bottom half and get the right answer. The
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only reason the top half was chosen here is because

there are less external forces to consider for the top.

Solve for the member we are looking for:

$$\sum

F_x=0=P+\frac{4}{\sqrt{17}}F_{CG}\\\frac{4}{\sqrt{17}}

F_{CG}=-P\\F_{CG}=-

P(\frac{\sqrt{17}}{4})\\F_{CG}=-500N(\frac{\sqrt{17}}{4

})\\F_{CG}=-515.388N$$

Again, the number we get is negative. The way we

drew FCG originally was as if the member was in tension.

The negative number just means that it is actually

compression, not tension.

$$ \underline{F_{CG}=515 \text{N (Compression)}}$$

Part c:

For part b I used the method of sections, as it would

be the fastest method. The method of joints would

require the lower joints to be solved first which would

be a much slower process, whereas with this method a

simple cut can be made and the member;s load can be
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quickly solved using equilibrium equations. Had the

question asked for all member loads to be solved

however, the method of joints would have been the

faster approach.

6. Review

Part a:

RAx is equal and opposite to P so we know it is correct,

and the value of RBy should also be correct as its

moment about A (250 * 4m = 1000 Nm), is equal and

opposite to the moment of P about A, (500 N * 2 m =

1000 Nm). as RAy is equal and opposite to RBy it is also

correct.

Part b:

The x component of the calculated value of FCG is

equal in magnitude to P (see equation below), and it is

the only cut member acting in the x direction.

Therefore, it must be correct.

$$\frac{4}{\sqrt{17}}(515 N)=500 N$$

Part c:

The method of sections allows you to solve a very

specific area of the systems internal forces (the

members that are cut), whereas the method of joints

usually requires you to solve most if not all of the

internal forces of the system. Therefore, the method of

sections is the most efficient for finding the internal

forces of specific parts of the system, whereas the

method of joints is more efficient for solving the whole

system.
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Example 5.5.2: Zero-Force Members,
submitted by Michael Oppong-Ampomah

1. Problem

A bridge with uneven ground has been

built as shown below. Force is applied at

three points on the top of the bridge.

a). Find any zero-force members

b). What purpose do these members serve?
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2. Draw

Free-body diagram:
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3. Knowns and Unknowns

Unknown: which members are zero-force

4. Approach

Look at each joint and determine how many forces are

in each direction. If there is only one force in a

direction, that member is zero-force.

5. Analysis

Part a:

Let’s start with joint C. If we think of the forces acting

in the x and y directions as shown below by the

coordinate frame, we see that there are two forces

acting in the y direction, and only one in the x direction.

Therefore, assuming the joint is in static equilibrium,

member CE is zero-force.
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If we do the same type of analysis for the other joints

and remove the zero-force members, the structure now

looks like this:

After one more analysis of the joints, we find one

more zero-force member, as shown below.
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Answer: CE, DG, and FG are zero-force members.

Part b:

Zero-force members exist to provide stability to the

truss, to keep the shape rigid.

6. Review

Although the new truss (without zero-force members)

looks strange, there are no joints where there’s only one

force in one direction, therefore there are no more

zero-force members.
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CHAPTER 6: INTERNAL
FORCES

In the last chapter we looked at the normal (axial) force running

through beams joined into trusses by analyzing either the joints or

a whole section of the truss.

In this chapter, we look at what happens along a single beam. We

will look at three types of internal forces and moments. Note that

when we say ‘internal forces’, we really mean ‘internal forces and

moments’. Inside a beam, we will calculate the normal and shear

forces as well as the bending moment at any point in the beam.

For this chapter: the shear force and bending moment change

throughout the beam because additional transverse forces are

applied. However, the normal force usually stays the same, because

it’s uncommon to have applied axial forces along the beam.

Here are the sections in this Chapter:

• 6.1 Types of Internal Forces – shear force, normal force and

bending moment

• 6.2 Shear/Moment Diagrams – graphing the shear force and

bending moment

• 6.3 Examples – Examples from your peers

Here are the important equations for this chapter:
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6.1 Types of Internal Forces

When you make a cut in an object, similar to a fixed reaction, we

describe what is happening at that point using one horizontal force

(called normal force), one vertical force (called shear force), and a

bending moment.

Adapted from source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-2_internal_forces_equilibrium/internal_forces_equilibrium.html

6.1.1 Types of Internal Forces

There are 3 types of internal forces (& moments):

• normal force (N) – the horizontal force we calculated in trusses

in the last chapter
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• shear force (V) – the vertical force that changes based on the

applied loads

• bending moment (M) – changes based on the applied loads and

applied moments

Normal force is represented by ‘N’. Shear force, the vertical force

is represented with ‘V’. Bending moment is ‘M’. Normal and shear

have units of N or lb and bending moment has units of Nm or ft-lb.

The following table summarizes information on internal forces (and

moments).

Force/
Moment Abbreviation Unit

Direction
for a
horizontal
beam

Normal
Force N N or lb horizontal

Shear Force V N or lb vertical

Moment M Nm or
ft-lb rotation

Note that for a vertical column, the normal force would be vertical.

For this reason, the normal force is often called ‘axial’ as in: along

the axis. The shear force for a column would be horizontal and is

sometimes called ‘transverse’.

This is for a 2d analysis of the beam assuming there is negligible

loading in the third dimension.

When a beam or frame is subjected to transverse

loadings, the three possible internal forces that are

developed are the normal or axial force, the shearing
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force, and the bending moment, as shown in section k of

the cantilever of the figure below. To predict the

behavior of structures, the magnitudes of these forces

must be known. In this chapter, the student will learn

how to determine the magnitude of the shearing force

and bending moment at any section of a beam or frame

and how to present the computed values in a graphical

form, which is referred to as the “shearing force” and

the “bending moment diagrams.” Bending moment and

shearing force diagrams aid immeasurably during

design, as they show the maximum bending moments

and shearing forces needed for sizing structural

members.

Normal Force

The normal force at any section of a structure is
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defined as the algebraic sum of the axial forces acting

on either side of the section.

Shearing Force

The shearing force (SF) is defined as the algebraic sum

of all the transverse forces acting on either side of the

section of a beam or a frame. The phrase “on either side”

is important, as it implies that at any particular instance

the shearing force can be obtained by summing up the

transverse forces on the left side of the section or on

the right side of the section.

Bending Moment

The bending moment (BM) is defined as the algebraic

sum of all the forces’ moments acting on either side of

the section of a beam or a frame.

Source: Internal Forces in Beams and Frames,

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames

In 3 dimensions, there are:
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• 1 normal force (N)

• 2 shear forces (V1 & V2), and

• 3 bending moments (M1, M2, & T – torsion).

Source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-2_internal_forces_equilibrium/
internal_forces_equilibrium.html

6.1.2 Sign Convention

So that there is a standard within the industry, a sign convention is

necessary so we agree on what is positive and what is negative. On
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the right for shear – up is positive. Notice that both of the following

figures show the identical sign convention.

Positive sign convention adapted from source: https://eng.libretexts.org/
Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/
1.04%3A_Internal_Forces_in_Beams_and_Frames

When you look at the beam as a whole (in the figure below), positive

shear is right side down. When you cut into beam, for it to be in

static equilibrium, the positive shear must then be up on the right

to be equal and opposite of the overall motion.
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Axial (Normal) Force

An axial force is regarded as positive if it tends to tier

the member at the section under consideration. Such a

force is regarded as tensile, while the member is said to

be subjected to axial tension. On the other hand, an

axial force is considered negative if it tends to crush the

member at the section being considered. Such force is

regarded as compressive, while the member is said to be

in axial compression.

Shear Force

A shear force that tends to move the left of the

section upward or the right side of the section

downward will be regarded as positive. Similarly, a shear

force that has the tendency to move the left side of the

section downward or the right side upward will be

considered a negative shear force.

Bending Moment

A bending moment is considered positive if it tends to

cause concavity upward (sagging). If the bending
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Positive sign convention adapted from
https://eng.libretexts.org/
Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Udoe
yo)/01%3A_Chapters/
1.04%3A_Internal_Forces_in_Beams
_and_Frames

moment tends to cause concavity downward (hogging),

it will be considered a negative bending moment.

Source: Internal Forces in Beams and Frames,

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames

6.1.3 Calculating the Internal Forces

To solve the internal forces at a certain point along the beam,

1. Find the external &

reaction forces

2. Make a cut.

3. In a FBD of one side of the

cut, add the internal forces

(and moments) using the

positive sign convention.

4. Use the equilibrium

equations to solve for the

unknown internal forces and moments.

Example: For the following distributed load, a) what are reaction
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forces? b) what are the internal forces at the midpoint b) between

reaction forces?

Adapted from: Source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-3_axial_torque_diagrams/axial_torque_diagrams.html

1. Solve external forces:

Adapted from: Source: Engineering Mechanics, Jacob Moore, et al.
http://mechanicsmap.psu.edu/websites/6_internal_forces/
6-3_axial_torque_diagrams/axial_torque_diagrams.html

[latex]\sum F_{X}=A_{x}=0[/latex]

[latex]\sum F_{y}=A_{y}+C-\omega L=0[/latex]

[latex]\sum M_{A}=-(\omega L)\left(\frac{L}{2}\right)+d_{A B}

C=0[/latex]
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$$C = \left(\frac{\omega L^2}{2d_{A B}}\right) = \frac{(100

\frac{lb}{ft} )*(7ft)^2}{2 * (4ft)} = 612.5 lb \text{ (+j direction)} $$

$$A_y = \omega*L- C = (100 \frac{lb}{ft})*(7 ft) – 612.5 lb = 87.5 lb

\text{ (+j direction) }$$

$$\underline{A_x = 0 \qquad A_y = 87.5 \text{ (+j )} \qquad C =

612.5 lb \text{ (+j )} }$$

2. Make a cut at B.

3. In a FBD of one side of the cut, add the internal forces (and

moments) using the positive sign convention.

4. Use the equilibrium equations to solve for the unknown internal

forces and moments.

For just this portion, the force from intensity is: Fw = ( 100 lb/ft

) * ( 2 ft) = 200 lb and acts 1 ft from the left, so the moment due to

intensity is: Mw = w * 2 ft * 1 ft = Fw * 1 ft = ( 100 lb/ft ) * ( 2 ft) * (1

ft) = 200 ft-lb

$$\sum F_y = 87.5 lb – 200 lb – V = 0 \\ V = -112.5 lb \text{ (-

indicates going up not down)} $$
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$$ \sum M_A = – (w * 2 ft) * (1 ft) – V * (2 ft) + M = 0 \\ M = (100

\frac{lb}{ft}) * 2 ft^2 + (-112.5 lb) * (2 ft) \\ M = 200 ft \cdot lb –

225 ft \cdot lb \\ M = -25 ft \cdot lb \text{ (- indicates going

reverse direction)} $$

$$\underline{N = 0 \qquad V = -112.5 lb \text{ (+j )} \qquad M =

-25 ft \cdot lb \text{ (clockwise)} }$$

Key Takeaways

Basically: The internal forces (and moments) for a 2d

beam are: shear, normal, and bending moment. There is a

positive sign convention to use when making a cut along a

beam to determine the forces inside: on the left: shear

down, normal out, moment up.

Application: A bridge that has different loads applied

(from cars, trucks, lampposts, etc). Use this method to

calculate the internal loads at a particular point of interest.

Looking Ahead: In the next section, we’ll look at how to

calculate the internal force across the whole beam, and

display the results graphically.
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6.2 Shear/Moment Diagrams

6.2.1 What are Shear/Moment Diagrams?

Shear/Moment diagrams are graphical representations of the

internal shear force and bending moment along the whole beam.

Source (image): By XFEM Skier – Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29178249
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Shearing Force Diagram

This is a graphical representation of the variation of

the shearing force on a portion or the entire length of a

beam or frame. As a convention, the shearing force

diagram can be drawn above or below the x-centroidal

axis of the structure, but it must be indicated if it is a

positive or negative shear force.

Bending Moment Diagram

This is a graphical representation of the variation of

the bending moment on a segment or the entire length

of a beam or frame. As a convention, the positive

bending moments are drawn above the x-centroidal axis

of the structure, while the negative bending moments

are drawn below the axis.

Below is a simple example of what shear and moment

diagrams look like, afterwards, the relation between the

load on the beam and the diagrams will be discussed.

Source: Internal Forces in Beams and Frames,

LibreTexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames
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6.2.2 Distributed Loads & Shear/Moment
Diagrams

There is a relationship between distributed loads and shear/

moment diagrams. Simply put:

[latex]\frac{dM}{dx}=V(x)[/latex]

[latex]\frac{dV}{dx}=-w(x)[/latex]

[latex]\frac{d^2M}{dx^2}=-w(x)[/latex]

Or:

[latex]\Delta M=\int V(x)dx[/latex]

[latex]\Delta V=\int w(x)dx[/latex]

So, if there is a constant distributed load, then the slope of shear

will be linear and the slope of the moment will be parabolic. If

distributed load is 0, then the shear will be constant and the slope

of the moment will be linear (as shown in example 1 in the next

section).

For the derivation of the relations among w, V, and M,

consider a simply supported beam subjected to a

uniformly distributed load throughout its length, as

shown in the figure below. Let the shear force and

bending moment at a section located at a distance

of x from the left support be V and M, respectively, and
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at a section x + dx be V + dV and M + dM, respectively.

The total load acting through the center of the

infinitesimal length is wdx.

To compute the bending moment at section x + dx,

use the following:

[latex]M_{x+dx}=M+Vdx-wdx \cdot dx/2\\ \qquad

\quad=M+Vdx \text{ (neglecting the small second order

term wdx^2/2)}[/latex]

[latex]M+dM=M+Vdx[/latex]

or

[latex]\frac{dM}{dx}=V(x)[/latex] (Equation 6.1)

Equation 6.1 implies that the first derivative of the

bending moment with respect to the distance is equal to

the shearing force. The equation also suggests that the

slope of the moment diagram at a particular point is

equal to the shear force at that same point. Equation

6.1 suggests the following expression:

[latex]\Delta M=\int V(x)dx[/latex] (Equation 6.2)

Equation 6.2 states that the change in moment equals

the area under the shear diagram. Similarly, the shearing

force at section x + dx is as follows:
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[latex]V_{x+dx}=V-wdx\\V+dV=V-wdx[/latex]

or

[latex]\frac{dV}{dx}=-w(x)[/latex] (Equation 6.3)

Equation 6.3 implies that the first derivative of the

shearing force with respect to the distance is equal to

the intensity of the distributed load. Equation

6.3 suggests the following expression:

[latex]\Delta V=\int w(x)dx[/latex] (Equation 6.4)

Equation 6.4 states that the change in the shear force

is equal to the area under the load diagram. Equation

6.1 and 6.3 suggest the following:

[latex]\frac{d^2M}{dx^2}=-w(x)[/latex] (Equation

6.5)

Equation 6.5 implies that the second derivative of the

bending moment with respect to the distance is equal to

the intensity of the distributed load.

Source: Internal Forces in Beams and Frames,

LibreTexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames
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Adapted from original source
https://eng.libretexts.org/
Bookshelves/Civil_Engineering/
Book%3A_Structural_Analysis_(Ud
oeyo)/01%3A_Chapters/
1.04%3A_Internal_Forces_in_Bea
ms_and_Frames

6.2.3 Producing a Shear/Moment Diagram

There are many methods you can use to solve a shear/moment

diagram. First, you can find the equation for each portion and

integrate using the above equations.

Second, you could use the method shown in the previous section

to calculate the internal forces at important points (where loads are

applied, the start and end of distributed loads, at reaction points).

Plot these points on the V and M plots at the x locations, then

connect the dots using the appropriate shape slope (more on this at

the bottom of this page).

Third, you can find the equations by using the equilibrium

equations (so there’s no integration/differentiation).

1. Draw a FBD of the

structure

2. Calculate the reactions using

the equilibrium equations

(may not need to do this if

choosing a cantilever beam

and using the free side for

the FBD).

3. Make a cut and add internal

forces N V and M using the

positive sign convention.

Depending on the number of loads, you may need multiple

cuts. Recall the positive convention:

4. For shear, find an equation (expression) of the shear that is x

distance from the origin (often the reaction) for each cut.

5. For moment, find an equation (expression) of the shear that is x

distance from the origin (often the reaction) for each cut.

6. Plot these equations on a plot on top of each other.
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The rest of this section will use this method.

Example 1

(adapted from https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames)

Draw the shear force and bending moment diagrams for the

cantilever beam supporting a concentrated load of 5 lb at the free

end 3 ft from the wall.

1. Draw a FBD of the structure

2. Calculate the reactions using the equilibrium equations (may not

need to do this if choosing a cantilever beam and using the free side

for the FBD).

First, compute the reactions at the support. Since the support
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at B is fixed, there will be three reactions at that support, namely

By, Bx, and MB. Applying the conditions of equilibrium suggests the

following:

[latex]\sum F_{x}=0: \quad \underline{B_{x}=0}[/latex]

[latex]\sum F_{y}=0: \quad-5 lb+B_{y}=0[/latex]

[latex]\qquad \quad \underline{B_{y}=5 lb}[/latex]

[latex]\sum M_{B}=0: \quad(5 lb )(3 \mathrm{ft})-M=0[/latex]

[latex]\qquad \quad \underline{M=15 ft \cdot lb}[/latex]

3. Make a cut and add internal forces N V and M using the positive

sign convention. Depending on the number of loads, you may need

multiple cuts

Only 1 cut needed because only 1 load is added at the end. (If it

were in the middle there would be 2 sections to consider). The value

x could be 0 to 3 ft.

4. For shear, find an equation (expression) of the shear that is x

distance from the origin (often the reaction) for each cut.

x is the distance from the free end of the cantilever beam to the

cut. The shearing force at that section is due to the applied load.

Using the equilibrium equations,

[latex]\sum F_y = -5 lb - V = 0 \\ \qquad \quad \underline{V =

- 5 lb} \text{ (- indicates V acts in opposite direction)}[/latex]

The constant number for shear means that it doesn’t change or
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vary by x. (If there were a distributed load, x would be part of the

equation).

The negative sign indicates the shear actually goes the opposite

direction. (This is due to the fact that the sign convention for a

shearing force states that a downward transverse force on the left of

the section under consideration will cause a negative shearing force

on that section.)

5. For the moment, find an equation (expression) of the shear that is

x distance from the origin (often the reaction) for each cut.

Here, x is measured from the left. Using sum of the moments

equations, find an expression for M. You could choose to sum the

moments about the end point where the load is applied, or you

could do it at the moving point x. Both take the same effort for this

problem, so let’s choose the left hand side where the 5 lb are being

applied.

[latex]\sum M_L = -Vx - M = 0[/latex]

[latex]\qquad \quad M = + Vx = (-5 lb) * x[/latex]

[latex]\qquad \quad \underline{M = -(5lb)x } \text{ (the negative

sign indicates the arrow goes the other direction.}[/latex]
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The obtained expression is valid for the entire beam (the region

0 < x < 3 ft). The negative sign indicates a negative moment, which

was established from the sign convention for the moment, so the

moment actually goes in the opposite direction. The moment due

to the 5 lb force tends to cause the segment of the beam on the

left side of the section to exhibit a downward concavity, and that

corresponds to a negative bending moment, according to the sign

convention for bending moment.

6. Plot these equations on a plot on top of each other.

Note that because the shearing force is a constant, it must be of

the same magnitude at any point along the beam. As a convention,

the shearing force diagram is plotted above or below a line

corresponding to the neutral axis of the beam, but a plus sign must

be indicated if it is a positive shearing force, and a minus sign should

be indicated if it is a negative shearing force. A way to check the

answer is to ensure the reaction force brings the problem back to

0. The shear is -5 until the last moment when the reaction force of

+5lb brings the force to 0.

Since the function for the bending moment is linear, the bending

moment diagram is a straight line. Thus, it is enough to use the two

principal values of bending moments determined at x = 0 ft and

at x = 3 ft to plot the bending moment diagram. As a convention,

negative bending moment diagrams are plotted below the neutral

axis of the beam, while positive bending moment diagrams are

plotted above the axis of the beam.
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Notice the units are included in the axes.

Here is a second explanation for how to create shear/moment

diagrams:

Shear Diagram

To create the shear force diagram, we will use the

following process.

1. Solve for all external forces acting on the body.

2. Draw out a free body diagram of the body

horizontally. Leave all distributed forces as
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distributed forces and do not replace them with

the equivalent point load.

3. Lined up below the free body diagram, draw a

set of axes. The x-axis will represent the location

(lined up with the free body diagram above), and

the y-axis will represent the internal shear force.

4. Starting at zero at the right side of the plot, you

will move to the right, pay attention to forces in

the free body diagram above. As you move right in

your plot, keep steady except…

◦ Jump upwards by the magnitude of the

force for any point forces going up.

◦ Jump downwards by the magnitude of the

force for any point forces going down.

◦ For any uniform distributed forces you

will have a linear slope where the

magnitude of the distributed force is the

slope of the line (positive slopes for upwards

distributed forces, negative slopes for

downwards distributed forces).

◦ For non-uniform distributed forces, the

shape of the shear diagram plot will be the

integral of the force function.

◦ You can ignore any moments or horizontal

forces applied to the body.

By the time you get to the left end of the plot,

you should always wind up coming back to zero. If

you don’t wind up back at zero, go back and check

your previous work.
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To read the plot, you

simply need to find the location of interest from the free

body diagram above, and read the corresponding value

on the y-axis from your plot. Positive numbers

represent an upwards internal shearing force to the

right of the cross section and a downwards force on the

left, and negative numbers indicate a downwards

internal shearing force to the right of the cross section
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and a upwards force on the left. A visual of these forces

can be seen in the diagram to the right.

Moment Diagram

The moment diagram will plot out the internal

bending moment within a horizontal beam that is

subjected to multiple forces and moments

perpendicular to the length of the beam. For practical

purposes, this diagram is often used in the same

circumstances as the shear diagram, and generally both

diagrams will be created for analysis in these scenarios.

To create the moment diagram for a shaft, we will use

the following process.

1. Solve for all external forces and moments,

create a free body diagram, and create the shear

diagram.

2. Lined up below the shear diagram, draw a set of

axes. The x-axis will represent the location (lined

up with the shear diagram and free body diagram

above), and the y-axis will represent the internal

bending moment.

3. Starting at zero at the right side of the plot, you

will move to the right, pay attention to shear

diagram and the moments in the free body

diagram above. As you move right in your plot, the

moment diagram will primarily be the integral of
the shear diagram, except…

◦ Jump upwards by the magnitude of the

moment for any negative (clockwise)
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moments.

◦ Jump downwards by the magnitude of the

moment for any positive (counter-
clockwise) moments.

◦ You can ignore any forces in the free body

diagram.

By the time you get to the left end of the plot,

you should always wind up coming back to zero. If

you don’t wind up back at zero, go back and check

your previous work.
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To read the plot, you

simply need to take the find the location of interest

from the free body diagram above, and read the

corresponding value on the y-axis from your plot.

Positive internal moments would cause the beam to bow

downwards (think a smile shape) negative internal

moments will cause the beam to bow upwards (think a

frown shape). You can also see the positive and negative

internal moments in the figure to the right.

Source: Engineering Mechanics, Jacob Moore, et al.

http://mechanicsmap.psu.edu/websites/

6_internal_forces/6-4_shear_moment_diagrams/

shear_moment_diagrams.html
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Example 2

Draw the shearing force and bending moment

diagrams for the cantilever beam subjected to a

uniformly distributed load in its entire length, as shown

in Figure 4.5a.

Answer:

Support reactions.

First, compute the reactions at the support. Since the

support at B is fixed, there will possibly be three
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reactions at that support, namely By, Bx, and MB, as

shown in the free-body diagram in Figure 4.4b. Applying

the conditions of equilibrium suggests the following:

Shear Force Function

Let x be the distance of an arbitrary section from the

free end of the cantilever beam, as shown in Figure 4.5b.

The shearing force of all the forces acting on the

segment of the beam to the left of the section, as shown

in Figure 4.5e, is determined as follows:

The obtained expression is valid for the entire beam.

The negative sign indicates a negative shearing force,

which was established from the sign convention for a

shearing force. The expression also shows that the
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shearing force varies linearly with the length of the

beam.

Shearing force diagram. Note that because the

expression for the shearing force is linear, its diagram

will consist of straight lines. The shearing force at x = 0

m and x = 5 m were determined and used for plotting

the shearing force diagram, as shown in Figure 4.5c. As

shown in the diagram, the shearing force varies from

zero at the free end of the beam to 100 kN at the fixed

end. The computed vertical reaction of By at the support

can be regarded as a check for the accuracy of the

analysis and diagram.

Bending Moment Function

The expression for the bending moment at a section

of a distance x from the free end of the cantilever beam

is as follows:

The negative sign indicates a negative moment, which

was established from the sign convention for moment.

As seen in Figure 4.5f, the moment due to the

distributed load tends to cause the segment of the beam

on the left side of the section to exhibit an upward

concavity, and that corresponds to a negative bending

moment, according to the sign convention for bending

moment.

Bending moment diagram. Since the function for the

394 | Statics



bending moment is parabolic, the bending moment

diagram is a curve. In addition to the two principal

values of bending moment at x = 0 m and at x = 5 m, the

moments at other intermediate points should be

determined to correctly draw the bending moment

diagram. The bending moment diagram of the beam is

shown in Figure 4.5d.

Source: Internal Forces in Beams and Frames,

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames

The following examples show the shear and moment diagrams

for each beam. For details on how to solve each, go

to: https://eng.libretexts.org/Bookshelves/Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames

Example 3
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Example 4
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Example 5
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Example 6
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Source: Internal Forces in Beams and Frames,

Libretexts. https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chap

ters/

1.04%3A_Internal_Forces_in_Beams_and_Frames
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6.2.4 Tips & Plot Shapes

Though there are exceptions, these rules are generally true:

• +V means increasing M

• -V means decreasing M

• When V = 0, that’s max or min M
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How does each plot start/end? Reactions only if no applied load/

moment at ends:

• Cantilever:

◦ At start/reaction: Nonzero V and M

◦ At end/unsupported end: 0 for both

• Simply supported

◦ For V: Start and end with reaction forces

◦ For M: Start and end at zero

• Where are the ‘jumps’ or inflection point where lines change?

◦ In V, forces ‘jump’ up or down where applied forces are,

matching the direction they are applied (also reactions)
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◦ In M, moments jump up or down where applied moments

are, matching the direction

• Relationship between graphs

◦ When there is in increasing slope in M, then Shear should

be positive

◦ When there is a decreasing slope in M, then Shear should

be negative

◦ When V is positive, M should be increasing

◦ When V is negative, M should be decreasing

◦ When intensity is positive, V should be increasing

◦ When intensity is negative, V should be decreasing

◦ Inflection points in the M plot (where the slope of the line

changes from negative to positive & max/min values)

should be 0 in the V plot

◦ A zero value in the V plot should produce a max or min

value in the M plot

The following figure shows the relationship between the derivatives.

Remember that the derivative of x2 (quadratic) = x (linear). The

derivative of x (linear) is a constant number. The derivative of a

constant number is 0. The derivative of moment is shear, so if you

have the shape of the moment, use this figure to approximate the

shape of shear by going down the plots.

The reverse is true when going from shear to moment. The

integral of shear is moment. The integral of 0 is a constant number.

The integral of a constant number is linear. The integral of linear

is quadratic. (The integral of quadratic is cubic). This progression

moves up the plots from the bottom to the top.
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There are a few online programs that can help confirm the shape

that you found or help you learn how to translate loads into shear

and moment diagrams. These are not acceptable to use on the

exam or in homework and have limited free versions. This is not an

endorsement of any of the sites, just showing learning tools.
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• https://skyciv.com/free-beam-calculator/

• https://clearcalcs.com/freetools/beam-analysis/au

• https://beamguru.com/beam/

Key Takeaways

Basically: Shear / Moment diagrams graphically display

the internal loads along a beam.

Application: This can help you identify the major stress

points to provide a safer design.

Looking Ahead: You will use this more in your structures

class.
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6.3 Examples

Here are examples from Chapter 6 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to the author eosgood@upei.ca.

Example 6.3.1: Internal Forces – Submitted
by Emma Christensen

1. Problem

The setup that holds the solar panels at the

UPEI FSDE is modeled below. Considering

beam S (1.9 m length), find the internal forces

at point C. Assume the intensity of the solar

panel on the beam is 200 N/m.

Sketch:
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Model:

2. Draw
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Free-body diagram:

3. Knowns and Unknowns

Knowns

• w = 220 N/m

• OA = 0.5 m

• AC = 0.2 m

• AB = 0.4 m

• L = 1.9 m

Unknowns: Nc, Vc, Mc

4. Approach

Use equilibrium equations. First solve for reaction

forces, then make a cut at C and solve for the internal

forces.

5. Analysis

$$w=\frac{F}{L}\\F=wL\\F_R=220N/m\cdot

1.9m\\F_R=418N\\\sum F_X=0=B_X$$
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Find reaction forces:

$$\sum M_A=0=B_y(0.4m)-

F_R(0.55m)\\(0.4m)B_y=418N(0.55m)\\B_y=\frac{229.

9 N\cdot m}{0.4m}\\B_y=574.75N$$

$$\sum F_y=0=-F_R+A_y+B_y\\A_y=F_R-

B_y\\A_y=418N-574.74N\\A_y=-156.75N$$

The answer we got for Ay is negative, which means

that the arrow should be drawn in the other direction.

We will change it for our next sketch.

Make a cut at C:

Now solve for the internal forces:

$$\sum F_x=0\:\:;\:\:N_c=0\\\sum F_y=0=-A_y-

V_c-(w\cdot L)\\V_c=-156.75N-(220N/m\

cdot0.95m)\\V_c=-346.75 N\\\sum

M_c=A_y(0.2m)+M_c+(F_{Rc}\cdot
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0.475m)\\M_c=-156.75 N (0.2m)-(220N/m\cdot 0.95m\

cdot 0.475m)\\M_c=-130.625N\cdot m$$

Final FBD, showing the arrows in the correct

directions:

6. Review

It makes sense that Ay and By are in different

directions, because the resultant force Fr of the solar

panel on the beam is not between A and B. It also makes

sense that the moment at C is in the clockwise direction

rather than the counterclockwise directions, when you

think about the direction of the forces applied to the

beam.

Example 6.3.2: Shear/Moment Diagrams –
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Submitted by Deanna Malone

1. Problem

A beam that is simply supported has two

point loads acting on it. One acts 2 m from

point A and the other acts at 2.5 m from C.

Point B is in the middle of the beam. The first

point load is 500 N and the second is 300 N.

What are the internal forces at point B? Solve

for reaction forces and include a shear/

moment diagram.
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2. Draw

Sketch:

Free-body diagram:

3. Knowns and Unknowns

Knowns:
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• F1 = 500 N

• F2 = 300 N

Unknowns: Ay, Ax, Cy, VB, MB, NB

4. Approach

Shear/moment equations, EOM equations

5. Analysis

Solve for reaction forces:

(Ax, Cy)

\begin{aligned}

\sum F_{x}=0=A_{x}=0 \\

\sum M_{A}=0 &=-F_{1} \cdot 2 m-F_{2} \cdot 5.5

m+C_{y} \cdot 8 m \\

C_{y}=&+F_{1} \cdot 2 m+F_{2} \cdot 5.5 m \\

C_{y} &=\frac{500 N \cdot 2 m+300 N \cdot 5.5 m}{8

m} \\

C_{y} &=331.25 \mathrm{~N}

\end{aligned}

(Ay)

\begin{aligned}

\sum F_{y}=0 &=A_{y}+C_{y}-F_{1}-F_{2} \\

A_{y} &=F_{1}+F_{2}-C_{y} \\

A_{y} &=500 \mathrm{~N}+300 \mathrm{~N} – 331.25

\mathrm{~N} \\

A_{y} &=468.75 \mathrm{~N}

\end{aligned}

Cut 1: at B
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\begin{aligned}

\sum F_{X}=0=A_{X} &+N_{B}=0 \\

& N_{B}=0 \\

\sum F_{y}=0 &=A_{y}-V_{B}-F_{1} \\

V_{B} &=A_{y}-F_{1} \\

V_{B} &=468.75 N – 500 N \\

V_{B}=-31.25 N

\end{aligned}

\begin{aligned}

\sum M_{B}=& 0=-A_{y}(4 m)+F_{1}(2 m)+M_{B} \\

& M_{B}=A_{y}(4 m)-F_{1}(2 m) \\

& M_{B}=468.75 N(4 m)-500 N(2 m) \\

M_{B} &=875 \mathrm{~N} \cdot \mathrm{m}

\end{aligned}

Cut 2: At the point where F1 is applied
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\begin{aligned}

\sum M_{1}=0 &=-A_{y}(2 m)+M_{1}=0 \\

M_{1} &=A_{y}(2 m) \\

M_{1} &=468.75 N(2 m) \\

M_{1} &=937.5 \mathrm{~N} \cdot m

\end{aligned}

Cut 3: At the point where F2 is applied

\begin{aligned}

\sum M_{2}=0 =-A_{y}(5.5 \mathrm{~m})+F_{1}(3.5

\mathrm{~m})+M_{2} \\

M_{2} &=A_{y}(5.5 \mathrm{~m})-F_{1}(3.5

\mathrm{~m}) \\

M_{2} &=468.75 \mathrm{~N}(5.5 \mathrm{~m})-500

\mathrm{~N}(3.5 \mathrm{~m}) \\

M_{2} &=828.125 \mathrm{~N} \cdot \mathrm{m}

\end{aligned}
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Answer: NB = 0, VB = -31.25 N, MB = 875 Nm

6. Review

The reaction forces make sense as they offset the

applied forces. The shear/moment diagrams returned to

zero so they are correct too. The moment found at B is

in the moment diagram, it is smaller than the maximum.
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CHAPTER 7: INERTIA

This chapter is a major preparation for objects that rotate during

dynamics class. We will cover cg, inertia, composite shapes, and

rotating about axes other than the centre of mass (cm) using the

parallel axis theorem. Here are the sections in this Chapter:

• 7.1 Center of Mass: Single Objects – How to find the cm of a

single object

• 7.2 Center of Mass: Composite Shapes – Finding the cm for

multiple objects or complex objects

• 7.3 Types of Inertia – Wait – there’s more than one type of

inertia!

• 7.4 Mass Moment of Inertia – How to calculate the mass

moment of inertia for rotational motion for single objects

• 7.5 Inertia Intro: Parallel Axis Theorem – Calculating the inertia

for single objects rotating about a different axis or for

composite problem

• 7.6 Examples – Examples from your peers

Here are the important equations for this chapter:
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7.1 Center of Mass: Single
Objects

To start, let’s calculate the center of mass! This is a weighted

function, similar to when we found the location of the resultant

force from multiple distributed loads and forces.

[latex]\bar{x}=\frac{m_1*x_1}{m_1+m_2}+\frac{m_2*x_2}{m_1

+m_2}[/latex]

When the density is the same throughout a shape, the center of

mass is also the centroid (geometric center).

7.1.1 Center of Mass of Two Particles

Consider two particles, having one and the same mass

m, each of which is at a different position on the x axis

of a Cartesian coordinate system.

Common sense tells you that the average position of
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the material making up the two particles is midway

between the two particles. Common sense is right. We

give the name “center of mass” to the average position

of the material making up a distribution, and the center

of mass of a pair of same-mass particles is indeed

midway between the two particles. How about if one of

the particles is more massive than the other? One would

expect the center of mass to be closer to the more

massive particle, and again, one would be right. To

determine the position of the center of mass of the

distribution of matter in such a case, we compute a

weighted sum of the positions of the particles in the

distribution, where the weighting factor for a given

particle is that fraction, of the total mass, that the

particle’s own mass is. Thus, for two particles on the x

axis, one of mass m1, at x1, and the other of mass m2, at

x2,

the position x of the center of mass is given by

equation 8-1:

[latex]\bar{x}=\frac{m_1*x_1}{m_1+m_2}+\frac{m_2

*x_2}{m_1+m_2}[/latex]

Note that each weighting factor is a proper fraction
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and that the sum of the weighting factors is always 1.

Also note that if, for instance, m1 is greater than m2,

then the position x1 of particle 1 will count more in the

sum, thus ensuring that the center of mass is found to

be closer to the more massive particle (as we know it

must be). Further note that if m1 = m2, each weighting

factor is 1/2, as is evident when we substitute m for

both m1 and m2 in equation 8-1:

$$\bar{x}=\frac{m}{m+m}x_1+\frac{m}{m+m}x_2\\\

bar{x}=\frac{1}{2}x_1+\frac{1}{2}x_2\\\bar{x}=\frac{x_

1+x_2}{2}$$

The center of mass is found to be midway between

the two particles, right where common sense tells us it

has to be.

Source: Calculus-Based Physics 1, Jeffery W. Schnick.

p142, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7

Below is a more visual representation of where the COM would be

for two different weighing particles.
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Source (image): Two_body_jacobi.svg: CWitte, from JPG by
Brews oharederivative work: WillowW via Wikimedia
Commons https://zh.wikipedia.org/wiki/
File:Jacobi_coordinates.svg

A second explanation:

The most common real-life example of a system like

this is a playground seesaw, or teeter-totter, with

children of different weights sitting at different

distances from the center. On a seesaw, if one child sits

at each end, the heavier child sinks down and the lighter

child is lifted into the air. If the heavier child slides in

toward the center, though, the seesaw balances.

Applying this concept to the masses on the rod, we note

that the masses balance each other if and only if m1d1 =

m2d2.
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This idea is not limited just to two point masses. In

general, if n" role="presentation">𝑛 masses,

m1,m2,…,mn," role="presentation">𝑚1, 𝑚2,…,𝑚𝑛, are

placed on a number line at points x1,x2,…,xn,"

role="presentation">𝑥1,𝑥2,…,𝑥𝑛, respectively, then the

center of mass of the system is given by:

$$ \bar x=\frac{\sum_{i=1}^n m_i

x_i}{\sum_{i=1}^nm_i}$$

Example 1:

Suppose four point masses are placed on a number line

as follows:

• m1=30kg," role="presentation">𝑚1=30𝑘𝑔, placed

at x1=−2m" role="presentation">𝑥1=−2𝑚
• m2=5kg," role="presentation">𝑚2=5𝑘𝑔, placed at

x2=3m" role="presentation">𝑥2=3𝑚
• m3=10kg," role="presentation">𝑚3=10𝑘𝑔,placed

at x3=6m" role="presentation">𝑥3=6𝑚
• m4=15kg," role="presentation">𝑚4=15𝑘𝑔,placed

at x4=−3m." role="presentation">𝑥4=−3𝑚.

Solution

Find the moment of the system with respect to the

origin and find the center of mass of the system.

First, we need to calculate the moment of the system

(the top part of the fraction):
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[latex]M =\sum_{i=1}^4 m_i *x_i \\\qquad \quad =

(30kg)*(-2m) + (5kg)*(3m)+(10kg)*(6m)+(15kg)*(-3m)

\\\qquad\quad = (-60+15+60-45)kg*m \\\qquad\

quad = -30 kg*m[/latex]

Now, to find the center of mass, we need the total

mass of the system:

$$ m = \sum_{i=1}^4 m_i = (30+5+10+15) kg = 60kg $$

Then we have [latex]\bar{x} = \frac{M}{m} = \frac{-30

kg*m}{60kg} = -0.5 m[/latex]

The center of mass is located 1/2 m to the left of the

origin.

Source: “Moments and Centers of Mass” by

LibreTexts, https://eng.libretexts.org/@go/page/67237

7.1.2 Center of Mass in 2D & 3D

When we are looking at multiple objects in 2D or 3D, we perform the

center of mass equation multiple times in the x, y, and z directions.

$$ \bar x=\frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^nm_i}

\qquad \bar y=\frac{\sum_{i=1}^n m_i y_i}{\sum_{i=1}^nm_i}

\qquad \bar z=\frac{\sum_{i=1}^n m_i z_i}{\sum_{i=1}^nm_i}$$
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In some sense, one can think about the center of mass

of a single object as its “average position.” Let’s consider

the simplest case of an “object” consisting of two tiny

particles separated along the x-axis, as seen below:

If the two particles have equal mass, then it’s pretty

clear that the “average position” of the two-particle

system is halfway between them. If the masses of the

two particles are different, would the “average position”

still be halfway between them? Perhaps in some sense

this is true, but we are not looking for a geometric

center, we are looking for the average placement of

mass. If m1 has twice the mass of m2, then when it

comes to the average placement of mass, m1 gets “two

votes.” With more of the mass concentrated at the

position x1 than at x2, the center of mass should be

closer to x1 than x2. We achieve the perfect balance by

“weighting” the positions by the fraction of the total

mass that is located there. Accordingly, we define as the

center of mass:

$$\bar

x_{cm}=(\frac{m_1}{m_1+m_2})x_1+(\frac{m_2}{m_1+

m_2})x_2=\frac{m_1x_1+m_2x_2}{M_{system}}$$

If there are more than two particles, we simply add all

of them into the sum in the numerator. To extend this

definition of center of mass into three dimensions, we

simply need to do the same things in the y and
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z directions. A position vector for the center of mass of

a system of many particles would then be:

$$\vec{r}_{cm}=\bar x_{cm}\underline{\hat{i}}+\bar

y_{cm}\underline{\hat{ j}}+ \bar

z_{cm}\underline{\hat{k}}\\=\frac{[m_1 x_1+m_2

x_2+…]}{M}\underline{\hat{i}}+\frac{[m_1y_1+m_2y_2

+…]}{M}\underline{\hat{ j}}+\frac{[m_1 z_1+m_2

z_2+…]}{M}\underline{\hat{k}}\\=\frac{m_1[x_1\

underline{\hat{i}}+y_1\underline{\hat{ j}}+z_1\

underline{\hat{k}}]+m_2[x_2\underline{\hat{i}}+y_2\

underline{\hat{ j}}+z_2\

underline{\hat{k}}]+…}{M}\\=\frac{m_1\vec r_1+m_2\

vec r_2+…}{M}$$

Source: ” Center of Mass” by Tom Weideman,

https://phys.libretexts.org/Courses/

University_of_California_Davis/

UCD%3A_Physics_9A__Classical_Mechanics/

4%3A_Linear_Momentum/4.2%3A_Center_of_Mass

Example 2:

Suppose three point masses are placed in the x-y plane

as follows (assume coordinates are given in meters):

• m1 = 2 kg placed at (-1, 3)m,
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• m2 = 6 kg placed at (1, 1)m, and

• m3 = 4 kg placed at (2, -2)m.

Find the center of mass of the system.

Solution
First we calculate the total mass of the system:

$$ m = \sum_{i=1}^3 m_i = (2 + 6 + 4) kg = 12 kg $$

Next we find the moments with respect to the x- and

y- axes:

[latex]M_x =\sum_{i=1}^3 m_i *x_i \\\qquad

\quad = (2kg)*(-1m) + (6kg)*(1m)+(4kg)*(2m) \\\qquad\

quad = (-2+6+8)kg*m \\\qquad\quad = 12 kg*m[/latex]

[latex]M_y =\sum_{i=1}^3 m_i *y_i \\\qquad

\quad = (2kg)*(3m) + (6kg)*(1m)+(4kg)*(-2m) \\\qquad\

quad = (6+6-8)kg*m \\\qquad\quad = 4 kg*m[/latex]

Then we have

[latex]\bar{x} = \frac{M_x}{m} = \frac{12 kgm}{12m} =

1 m[/latex]

[latex]\bar{y} = \frac{M_y}{m} = \frac{4 kgm}{12m} =

0.333 m[/latex]

The center of mass of the system is: (1, 0.333)m.

Source: “Moments and Centers of Mass” by

LibreTexts, https://eng.libretexts.org/@go/page/67237

7.1.3 The Center of Mass of a Thin Uniform
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Rod (Calculus Method)

Quite often, when the finding of the position of the

center of mass of a distribution of particles is called for,

the distribution of particles is the set of particles

making up a rigid body. The easiest rigid body for which

to calculate the center of mass is the thin rod because it

extends in only one dimension. (Here, we discuss an

ideal thin rod. A physical thin rod must have some

nonzero diameter. The ideal thin rod, however, is a good

approximation to the physical thin rod as long as the

diameter of the rod is small compared to its length.)

In the simplest case, the calculation of the position of

the center of mass is trivial. The simplest case involves a

uniform thin rod. A uniform thin rod is one for which

the linear mass density µ, the mass-per-length of the

rod, has one and the same value at all points on the rod.

The center of mass of a uniform rod is at the center of

the rod. So, for instance, the center of mass of a uniform

rod that extends along the x axis from x = 0 to x = L is at

(L/2, 0).

The linear mass density µ, typically called linear

density when the context is clear, is a measure of how

closely packed the elementary particles making up the

rod are. Where the linear density is high, the particles

are close together.

To picture what is meant by a non-uniform rod, a rod

whose linear density is a function of position, imagine a

thin rod made of an alloy consisting of lead and
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aluminum. Further imagine that the percentage of lead

in the rod varies smoothly from 0% at one end of the

rod to 100% at the other. The linear density of such a

rod would be a function of the position along the length

of the rod. A one-millimeter segment of the rod at one

position would have a different mass than that of a one-

millimeter segment of the rod at a different position.

People with some exposure to calculus have an easier

time understanding what linear density is than calculus-

deprived individuals do because linear density is just the

ratio of the amount of mass in a rod segment to the

length of the segment, in the limit as the length of the

segment goes to zero. Consider a rod that extends from

0 to L along the x axis. Now suppose that ms(x) is the

mass of that segment of the rod extending from 0 to x

where x ≥ 0 but x < L. Then, the linear density of the rod

at any point x along the rod, is just dm8/dx evaluated at

the value of x in question.

Source: Calculus-Based Physics 1, Jeffery W. Schnick.

p143, https://openlibrary.ecampusontario.ca/
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catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7

7.1.4 The Center of Mass of a Non-Uniform
Rod

Now that you have a good idea of what we mean by

linear mass density, we are going to illustrate how one

determines the position of the center of mass of a non-

uniform thin rod by means of an example.

Example 3:

Find the position of the center of mass of a thin rod that

extends from 0 to 0.890 m along the x axis of a Cartesian

coordinate system and has a linear density given by µ =

0.650 kg/m3

In order to be able to determine the position of the

center of mass of a rod with a given length and a given

linear density as a function of position, you first need to

be able to find the mass of such a rod. To do that, one

might be tempted to use a method that works only for

the special case of a uniform rod, namely, to try using m
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= µL with L being the length of the rod. The problem

with this is, that µ varies along the entire length of the

rod. What value would one use for µ ? One might be

tempted to evaluate the given µ at x = L and use that,

but that would be acting as if the linear density were

constant at µ = µ(L). It is not. In fact, in the case at hand,

µ(L) is the maximum linear density of the rod, it only has

that value at one point on the rod.

Instead, using integration, we find the equation:

[latex]m=\frac{bL^3}{3}[/latex]

That can now be used to calculate the mass of a non-

linear rod. The value of L is given as 0.890 m and we

defined b to be the constant 0.650 kg/m3, therefore

$$m=\frac{0.650\

frac{kg}{m^3}(0.890m)^3}{3}\\m=0.1527kg$$

That’s a value that will come in handy when we

calculate the position of the center of mass.

Now, when we calculated the center of mass of a set

of discrete particles (where a discrete particle is one

that is by itself, as opposed, for instance, to being part of

a rigid body) we just carried out a weighted sum in

which each term was the position of a particle times its

weighting factor and the weighting factor was that

fraction, of the total mass, represented by the mass of

the particle. We carry out a similar procedure for a

continuous distribution of mass such as that which

makes up the rod in question.

Once again, using integration, we find the equation:

[latex]\bar{x}=\frac{bL^4}{4m}[/latex]
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Now we substitute variables with values; the mass m

of the rod that we found earlier, the constant b that we

defined to simplify the appearance of the linear density

function, and the given length L of the rod:

$$m= \frac{\left( 0.650\frac{kg}{m^3} \right)

(0.890m)^4}{4(0.1527kg)}\\\bar{x}=0.668m$$

This is our final answer for the position of the center

of mass. Note that it is closer to the denser end of the

rod, as we would expect.

Source: Calculus-Based Physics 1, Jeffery W. Schnick.

p144, https://openlibrary.ecampusontario.ca/

catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7

Key Takeaways

Basically: When there are multiple objects, the center of

mass is the location in the x, y, and z directions between

the objects.

Application: To calculate the acceleration or use F = ma,

m is the total mass at the center of mass.
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Looking Ahead: The next section will look at how to

calculate the center of mass for a complex object.
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7.2 Center of Mass:
Composite Shapes

Instead of integrating to find the center of mass, we can split an

object up into recognizable shapes to determine the center of mass.

This is faster than the integration method, and allows for many

different ways to find the answer.

In this section, the terms ‘centroid’ and ‘center of mass’ are used,

somewhat interchangeably. The centroid is the geometric center.

The center of mass takes into account the density of an object. If the

density is the same throughout an object, then the centroid is the

same as the center of mass. For the rigid beams we will be looking at

in statics, the centroid is at the same location as the center of mass.

7.2.1 Centroid Tables

We use the centroid tables that are listed below to combine the

locations of the centers of mass for each shape. Approximations are

needed as real life objects are rarely perfectly square or circular, but

if they are symmetric, it makes it easier to approximate.

The locations of the center of mass (rcm) are as follows. The

source for the images are from Jacob Moore et al.

http://mechanicsmap.psu.edu/websites/centroidtables/

centroids2D/centroids2D.html
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Shape

Images from Jacob Moore et al.
http://mechanicsmap.psu.edu/websites/
centroidtables/centroids2D/
centroids2D.html

rcm

Rectangle

[latex]Area = bh[/latex]

[latex]r_{cm} =
\left[\frac{b}{2},
\frac{h}{2}\right][/latex]

Right
Triangle

[latex]Area =
\frac{1}{2}bh[/latex]

[latex]r_{cm} =
\left[\frac{b}{3},
\frac{h}{3}\right][/latex]

Triangle

[latex]Area =
\frac{1}{2}bh[/latex]

[latex]r_{cm} =
\left[\frac{b}{2},
\frac{h}{3}\right][/latex]
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Circle

[latex]Area = \pi r^2[/latex]

[latex]r_{cm} = \left[0,0\
right][/latex]

Circular
Annulus

[latex]Area = \pi
(r_o^2-r_i^2)
\\r_o=\text{outer
radius}\\r_i=\text{inner
radius}[/latex]

[latex]r_{cm} = \left[0,0\
right][/latex]

Semicircle

[latex]Area =
\frac{\pi}{2}r^2[/latex]

[latex]r_{cm} =
\left[0,\frac{4}{3\pi}r\
right][/latex]
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Quarter
Circle

[latex]Area =
\frac{\pi}{4}r^2[/latex]

[latex]r_{cm}=\left[\frac{4}{
3\pi}r,\frac{4}{3\pi}r\
right][/latex]

Ellipse

[latex]Area = \pi a b[/latex]

[latex]r_{cm} = \left[0,0\
right][/latex]
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Example 1: A Single Object

To find the cm, select the appropriate shape from the above table.

.

.

.

.

.
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Use the equation to solve for rcm.

This is an appropriate answer as it is less than the midpoint,

where it would be for a square:

[latex]\underline{\vec r}_{cm} = [3.4cm, 3.4cm, 0][/latex].

7.2.2 Composite Shapes

To find the center of mass of an object, you:

1. Define an origin

2. Split the object up into recognizable shapes

3. Find the center of mass (cm) of each shape from the origin

4. Calculate the mass of each part: [latex]\rho =

\frac{m}{V}[/latex] (To find the centroid, this step can be

skipped and only the area or volume is used).

5. Use the weighted cm equations to find the x cm. Repeat for y
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and z.

$$ \bar x=\frac{\sum m_i x_i}{\sum m_i} \qquad \bar

y=\frac{\sum m_i y_i}{\sum m_i} \qquad \bar z=\frac{\sum m_i

z_i}{\sum m_i}$$

Start the process by labeling an origin point and axes

on your shape. It will be important to measure all

locations from the same point. Next, we must break our

complex shape down into several simpler shapes. This

may include areas or volumes (which we will count as

positive areas or volumes) or holes (which we will count

as negative areas or volumes). Each of these shapes will

have a centroid (𝐶) or center of mass (𝐺) listed on the

diagram.
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For the shape shown at the top, we can break it down
into a rectangle (1), a right triangle (2), and a circular
hole (3). Each of these simple shapes is something we
have listed in the centroid table to the right.

Once we have identified the different parts, we will

create a table listing the area or volume of each piece,

and the 𝑥 and 𝑦 centroid coordinates (or 𝑥, 𝑦, and 𝑧
coordinates in 3D). It is important to remember that

each coordinate you list should be relative to the same

base origin point that you drew in earlier. You may need

to mentally adjust diagrams in the centroid tables so

that the shape is oriented in the right direction, and

account for the placement of the shape relative to the

axes in your diagram.
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For each of the shapes, we need to find the area and the x and y
coordinates of the centroid. Remember to find the centroid
coordinates relative to a single set of axes that is the same for all
shapes.

Once you have the areas and centroid coordinates for

each shape relative to your origin point, you can find

the 𝑥 and 𝑦coordinate of the centroid for the overall

shape with the following formulas. Remember that areas

or volumes for any shape that is a hole or cutout in the

design will be a negative area in your formula.

$$ \bar x=\frac{\sum_{i=1}^n m_i

x_i}{\sum_{i=1}^nm_i} \qquad \bar

y=\frac{\sum_{i=1}^n m_i y_i}{\sum_{i=1}^nm_i} $$
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This generalized formula to find the centroid’s 𝑥-

location is simply Area 1 times [latex]\bar x_1[/latex]

plus Area 2 times [latex]\bar x_2[/latex], plus Area 3

times [latex]\bar x_3[/latex], adding up as many shapes

as you have in this fashion and then dividing by the

overall area of your combined shape. The equations are

the same for the 𝑦-location of the overall centroid,

except you will instead be using [latex]\bar y[/latex]-

values in your equations.

For centroids in three dimensions we will simply use

volumes in place of areas, and we will have a 𝑧
coordinate for our centroid as well as the 𝑥 and 𝑦
coordinates.

Source: Jacob Moore et al.

http://mechanicsmap.psu.edu/websites/

A2_moment_intergrals/method_of_composite_parts/

methodofcompositeparts.html

Example 2 – A Composite Object

For the following C shape, where is the center of mass?
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This example used the density to calculate mass. To find the

centroid, the area could have been used instead of the mass.

However to find the center of mass, the density was used to

calculate the mass of each object individually: [latex]\rho =

\frac{m}{V}[/latex].

Example 3: Using Subtraction instead of Addition

For the following C shape, where is the center of mass? (Use

different shapes than above).
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The same answer is reached! This method involved only 2 shapes

instead of 3.

There are more examples at http://mechanicsmap.psu.edu/
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websites/A2_moment_intergrals/method_of_composite_parts/

methodofcompositeparts.html with pdfs and video solutions.

Key Takeaways

Basically: When there are complicated shapes, the

center of mass can be found by breaking the shape

up into better known shapes.

Application: To calculate the inertia of an object

rotating about its center of mass, you will need to

know where the center of mass is.

Looking Ahead: The next section will look at types

of inertia.
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7.3 Types of Inertia

There are multiple kinds of inertia. In this course, when we talk

about inertia, we usually refer to mass moment of inertia. For this

course, you need to know the names of three types of moment of

inertia (MOI), when to use each, and the units for each.

Area moment of inertia is used in structures to determine how

stiff a beam is, or how much it will deflect. The unit is m4 or ft4.

Source: Sonitron Support https://commons.wikimedia.org/wiki/
File:Piezo_bending_principle.jpg

Product moment of inertia is a shaft’s resistance to torsion (or

twisting). The unit is m4 or ft4.

Source: Orion8 https://commons.wikimedia.org/wiki/
File:Twisted_bar.png
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Source: K. “bird”
https://commons.wikimedia.o
rg/wiki/
File:Elena_Sokolova_04_NH
K_2.jpg

Source: Sandro Halank
https://commons.wikimedia.org/
wiki/
File:2020-01-11_Women%27s_Single_
Figure_Skating_Short_Program_(202
0_Winter_Youth_Olympics)_by_San
dro_Halank%E2%80%93668.jpg

Mass moment of inertia is the rotational equivalent to mass. A

really heavy object is hard to move, hence it resists motion. An

object with a really big inertia is hard to rotate, hence it resists

rotation. An inertia is a quantity of how mass is distributed around a

body, such as an ice skater spinning with their arms in or spread out.

The unit is kgm2 or slugft2. We will talk more about mass moment of

inertia in the next sections.

Here is a table summarizing the three

types of inertia:
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A moment integral, as the name implies, is the

general concept using integration to determine the net

moment of a force that is spread over an area or volume.

Because moments are generally a force times a distance,

and because distributed forces are spread out over a

range of distances, we will need to use calculus to to

determine the net moment exerted by a distributed

force.

$$ \int M = \int f (d) * d $$

Beyond the most literal definition of a moment

integral, the term ‘moment integral’ is also general

applied the process of integrating distributed areas or

masses that will be resiting some moment about a set

axis.

Some of the applications of moment integrals include:

1. Finding point loads that are equivalent to

distributed loads (the equivalent point load)

2. Finding the centroid (geometric center) or

center of mass for 2D and 3D shapes.

3. Finding the area moment of inertia for a beam

cross section, which will be one factor in that

beam’s resistance to bending.

4. Finding the polar area moment of inertia for a

shaft cross section, which will be one factor in

that shaft’s resistance to torsion.

5. Finding the mass moment of inertia, indicating

a body’s resistance to angular accelerations.

When looking at moment integrals, there are number

of different types of moment integrals. These will
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include moment integrals in one dimension, two

dimensions, and three dimensions, moment integrals of

force functions, of areas/volumes, or of mass

distributions, first order or second order moment

integrals, and rectangular or polar moment integrals.

Any combination of these different types is possible

(for example a first, rectangular, 2D, area moment

integral or a second, polar, 3D, mass moment integral).

However, only some combinations will have practical

applications and will be discussed in detail on future

pages.

1D, 2D, and 3D Moment Integrals

Technically we can take the moment integral in any

number of dimensions, but for practical purposes we

will never deal with moment integrals beyond 3

dimensions. The number of dimensions will affect the

complexity of the calculations (with 3D Moment

integrals being the more involved than 1D or 2D moment

integrals), but the nature of the problem will dictate the

dimensions needed. Often this is not listed in the type of

moment integral, requiring you to assume the type

based on the context of the problem.

Force, Area/Volume, and Mass Moments Integrals

The next distinction in moment integrals is regard
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what we are integrating. Generally, we can integrate

force functions over some distance, area, or volume, we

can integrate the area or volume function itself, or we

can integrate the mass distribution over the area or

volume. Each of these types of moment integrals has a

different purpose and will start with a different

mathematical function to integrate, but the integration

process beyond that will be very similar.

First vs. Second Moments Integrals

For moment integrals we will always be multiplying

the force function, area or volume function, of the mass

distribution function by a distance, or a distance

squared. First moment integrals just multiply the initial

function by the distance, while second moment

integrals multiply the function by the distance squared.

Again the type of moment integral we will use depends

upon our application, with things like equivalent point

load, centroids, and center of mass relying on first

moment integrals, and area moments of inertia, polar

moments of inertia, and mass moments of inertia relying

on second moment integrals. As you can probably

deduce from this list, second moment integrals, are

often labeled as a ‘moment of inertia‘

Rectangular vs. Polar Moments Integrals

Finally we will talk about rectangular moments
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integrals versus polar moments integrals. This is a

difference in how we define the distance in our moment

integral. Let’s start with the distinction in 2D. If our

distance is measured from some axis (for example the x-

axis, or the y-axis) then it is a rectangular moment

integral. If on the other hand the distance is measured

from some point (such as the origin) then it is a polar

moment integral.

In 2D, if we measure the distance from some axis (similar to what
x and y do here) then we have a rectangular moment integral. If
we measure the distance from some point (such as r does) then
we have a polar moment integral.

This distinction is important for how we will take the

integral. For rectangular moment integrals we will move

left to right or bottom to top. For polar moment

integrals we will instead take the integral by radiating

out from the center point.
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In three dimensional problems, the definitions change

slightly. For rectangular moment integrals the distance

will be measured from some plane (such as the xy plane,

xz plane, or yz plane). Again we will integrate left to

right, bottom to top, or now back to front with distances

corresponding to the x, y or z coordinates of that point.

For a polar moment integrals the distance will be

measured from some axis (such as the the x, y, or z axis),

and we will integrate by radiating outward from that

axis.

Source: Jacob Moore et al.

http://mechanicsmap.psu.edu/websites/

A2_moment_intergrals/moment_integrals/

momentintegrals.html

Key Takeaways

Basically: There are many types of inertia, including area,

product, and mass. They have different units and represent

different physical quantities of an object.

Application: A beam’s resistance to bending (area moment

of intertia), a shaft’s resistant to torsion (product/polar
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moment of inertia), and an object’s resistance to rotating

(mass moment of inertia).

Looking Ahead: Area and product moment of inertia will

be covered more in structures. Mass moment of inertia is

used in statics nd dynamics. The next section will look at

how to calculate the mass moment of inertia.
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7.4 Mass Moment of Inertia

7.4.1 Intro to Mass Moment of Inertia

Mass moment of inertia, or inertia as it will be referred to from here

on, is resistance to rotation. The bigger the inertia, the slower the

rotation. [latex]\sum M = I\alpha[/latex]. Inertia is always positive

and has units of kgm2 or slugft2.

For an infinitesimal unit of mass, the inertia depends on how far it

is from the axis of rotation.

$$ I = \int_m r^2dm $$

As shown in this image, each little dm at r distance from the axis

of rotation (y) is added up (through integration). If r is bigger, the

inertia is bigger.

If there is more mass closer to the axis of rotation, the inertia

is smaller. A skill that you can develop is your visualization of the

rotation about each axis. As shown in the following figure, rotating

about the different axes will produce different types of rotation. You

can imagine sticking your pencil into an object and twisting along
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that axis. In this image, rotation about the y axis and x axis produce

different types of rotation. Due to the symmetry, rotation about the

x axis and z axis looks identical.

The red r’s in this image show the distance that is being measured

when adding up each little infinitesimal dm. Notice how the r

changees direction from x to y but looks the same between x and z.

Equations have been developed for common shapes so that you

don’t have to integrate every time you want to find the inertia of an

object. The result is different for each axis, as shown in the following

figure.

‘Ixx‘ can be read as ‘the inertia if rotating about the x-axis’. Notice
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for Ixx and Izz that the height and radius of the cylinder affect the

inertia, whereas for Iyy, only the radius is considered.

The equations for each of the objects are listed in a table below.

First is a second explanation of inertia.

We start by constructing, in our minds, an idealized

object for which the mass is all concentrated at a single

location which is not on the axis of rotation: Imagine a

massless disk rotating about an axis through the center

of the disk and perpendicular to its faces.

Let there be a particle of mass m embedded in the disk

at a distance r from the axis of rotation. Here’s what it

looks like from a viewpoint on the axis of rotation, some

distance away from the disk:

where the axis of rotation is marked with an O.

Because the disk is massless, we call the moment of

inertia of the construction, the moment of inertia of a
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particle, with respect to rotation about an axis from

which the particle is a distance r.

I = mr2

is our equation for the moment of inertia of a particle

of mass m, with respect to an axis of rotation from

which the particle is a distance r.

Now suppose we have two particles embedded in our

massless disk, one of mass m1 at a distance r1 from the

axis of rotation and another of mass m2 at a distance r2

from the axis of rotation.

The moment of inertia of the first one by itself would

be

I1 = m1r1
2
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and the moment of inertia of the second particle by

itself would be

I2 = m2r2
2

The total moment of inertia of the two particles

embedded in the massless disk is simply the sum of the

two individual moments of inertial.

I = I1 + I2

I = m1r1
2 + m2r2

2

This concept can be extended to include any number

of particles. For each additional particle, one simply

includes another miri
2 term in the sum where mi is the

mass of the additional particle and ri is the distance that

the additional particle is from the axis of rotation. In the

case of a rigid object, we subdivide the object up into an

infinite set of infinitesimal mass elements dm. Each

mass element contributes an amount of moment of

inertia

dI = r2dm

to the moment of inertia of the object, where r is the

distance that the particular mass element is from the

axis of rotation.

Source: Calculus-Based Physics 1, Jeffery W. Schnick.

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7
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7.4.2 Inertia Table of Common Shapes

Specific inertia equations depending on the shape of the object and

axis of rotation can be found below. Notice some of the shapes

have multiple sets of axes: [latex]I_{xx} \text{ and }

I_{xx}^\prime[/latex]. There are multiple equations.
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Symmetric Shapes

Thin Ring

$$ I_{xx} = \frac{1}{2}mr^2 \\I_{yy}=mr^2
\\I_{zz} = \frac{1}{2}mr^2 $$

* thickness << 1

Circular Plate

$$ I_{xx} = \frac{1}{4}mr^2
\\I_{yy}=\frac{1}{2}mr^2 \\I_{zz} =
\frac{1}{4}mr^2 $$

$$ I_{yy^\prime} = \frac{3}{2}mr^2 $$

* thickness << 1

Cylinder

$$ I_{xx} = \frac{1}{12}m(3r^2+h^2)
\\I_{yy}=\frac{1}{2}mr^2 \\I_{zz} =
\frac{1}{12}m(3r^2+h^2) $$

$$Volume = \pi r^2 h $$

Sphere

$$I_{xx}=\frac{2}{5}mr^2
\\I_{yy}=\frac{2}{5}mr^2
\\I_{zz}=\frac{2}{5}mr^2 $$

$$Volume = \frac{4}{3}\pi r^3 $$
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Slender Rod

$$ I_{xx} = \frac{1}{12}ml^2
\\I_{yy}=0\\I_{zz} = \frac{1}{12}ml^2

$$ I_{xx^\prime} = \frac{1}{3}ml^2
\\I_{zz^\prime} = \frac{1}{3}ml^2 $$

* radius << length

Rectangular
Plate

$$ I_{xx} = \frac{1}{12}mh^2
\\I_{yy}=\frac{1}{12}m(h^2+b^2) \\I_{
\frac{1}{12}mb^2 $$

* thickness << 1

Rectangular
Block

$$ I_{xx} = \frac{1}{12}m(h^2+d^2)
\\I_{yy}=\frac{1}{12}m(d^2+w^2) \\I_{
= \frac{1}{12}m(h^2+w^2) $$

$$ Volume = bwh $$

Asymmetric Shapes
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Half Cylinder

$$ I_{xx} = \left( \frac{1}{4}-\frac{16}{9
\pi^2} \right)mr^2 + \frac{1}{12}mh^2
\\I_{yy}= \left( \frac{1}{2}-\frac{16}{9
\pi^2} \right) mr^2 \\I_{zz} =\left(
\frac{1}{4}-\frac{16}{9 \pi^2} \right)mr^2 +
\frac{1}{12}mh^2 $$

$$ I_{xx^\prime} =
\frac{1}{12}m(3r^2+h^2) \\I_{yy^\prime
\frac{1}{2}mr^2)\\I_{zz^\prime} =
\frac{1}{12}m(3r^2+h^2) $$

$$Volume = \frac{1}{2} \pi r^2 h $$

Hemisphere

$$I_{xx}=\frac{83}{320}mr^2
\\I_{yy}=\frac{2}{5}mr^2
\\I_{zz}=\frac{83}{320}mr^2 $$

$$I_{xx^\prime}=\frac{2}{5}mr^2
\\I_{zz^\prime}=\frac{2}{5}mr^2 $$

$$Volume = \frac{2}{3}\pi r^3 $$

Cone

$$I_{xx}=\frac{3}{80}m(4r^2+h^2)
\\I_{yy}=\frac{3}{10}mr^2
\\I_{zz}=\frac{3}{80}m(4r^2+h^2) $$

$$I_{xx^\prime}=\frac{1}{20}m(3r^2+
2)
\\I_{zz^\prime}=\frac{1}{20}m(3r^2+
$$

$$Volume = \frac{1}{3}\pi r^2h $$

Hallow Shells
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Cylindrical
Shell

$$ I_{xx} = \frac{1}{6}m(3r^2+h^2)
\\I_{yy}=mr^2 \\I_{zz} =
\frac{1}{6}m(3r^2+h^2) $$

* Thickness << 1

Spherical
Shell

$$I_{xx}=\frac{2}{3}mr^2
\\I_{yy}=\frac{2}{3}mr^2
\\I_{zz}=\frac{2}{3}mr^2 $$

* Thickness << 1

Hemispherical
Shell

$$I_{xx}=\frac{5}{12}mr^2
\\I_{yy}=\frac{2}{3}mr^2
\\I_{zz}=\frac{5}{12}mr^2 $$

$$I_{xx^\prime}=\frac{2}{3}mr^2
\\I_{zz^\prime}=\frac{2}{3}mr^2 $$

* Thickness << 1

Images source: Jacob Moore et al. http://mechanicsmap.psu.edu/websites/centroidtables
centroids3D/centroids3D.html

Notice how different objects with the same mass and radius

rotate at different rates. This simulation shows a cylinder (blue),

ring (green), solid sphere (yellow-brown), and spherical shell (red).

Which one has the least inertia? Why?
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Source: Lucas Vieira. https://en.wikipedia.org/wiki/
Moment_of_inertia#/media/File:Rolling_Racers_-_Moment_of_inertia.gif

7.4.3 Radius of Gyration

A concept called the radius of gyration (k) converts a shape into

a thin ring. This is used for particularly complex shapes. If a

homework problem says ‘the radius of gyration k = 15 cm’, that

means if the shape were a thin ring, it would have a radius of 15 cm.

You calculate the mass moment of inertia using the ring equation:

[latex]I = mk^2[/latex]
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Source:
https://phys.libretexts.org/@go/page/
18431

[latex]\qquad I =

mk^2[/latex]

For example, if the mass of an

object is m=10 kg, the radius of

gyration is 5 m, then the inertia is:

I = mk2 = 10 kg * 5 m * 5 m = 250 kgm2.

To find the radius of gyration:

$$ k=\sqrt{\frac{I}{m}}=\sqrt{\frac{250 kgm^2}{10kg}} = 5 m $$

Key Takeaways

Basically: Mass moment of inertia is an object’s

resistance to rotation and is impacted by mass and

distance from the axis of rotation.

Application: The speed that something rotates,

such as a satellite spinning in space, is impacted by

it’s inertia. A bigger inertia has a smaller angular

acceleration. A smaller inertia allows for a larger

angular acceleration.
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Looking Ahead: This will be used throughout

dynamics. The next section looks at calculating

inertia of composite objects or from a different axis.
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7.5 Inertia Intro: Parallel Axis
Theorem

There are two great uses for the parallel axis theorem:

1. Finding the inertia of a complex object with multiple parts.

Source: Jacob Moore et al. mechanicsmap.psu.edu/
websites/A2_moment_intergrals/
parallel_axis_theorem/parallelaxistheorem.html

2. Rotating an object about an axis other than through the center of

mass (y’)
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Source (image): By Jack Ver,
https://commons.wikimedia.org/w/
index.php?curid=6613952

To begin with, the parallel axis theorem is equal to the inertia about

the center of mass (Icm) plus the distance between the axes of

rotation squared times the mass.

$$I=I_{cm}+md^2$$

Example 1:

For a disk, the distance between axes y and y’ is d and the

[latex]I_{cm} = \frac{1}{2}mr^2[/latex].
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Adapted from: Adapted from source: mechanicsmap.psu.edu/websites/
A2_moment_intergrals/parallel_axis_theorem/parallelaxistheorem.html

$$I=I_{cm}+md^2 = \frac{1}{2}mr^2+mr^2 = \frac{3}{2}mr^2$$

You will need the table of common geometric shapes in the

previous section to find the Icm for each object.

• I is the moment of inertia of an object with

respect to an axis from which the center of

mass of the object is a distance d.

• ICM is the moment of inertia of the object with

respect to an axis that is parallel to the first axis

and passes through the center of mass.

• m is the mass of the object.

• d is the distance between the two axes.

The parallel axis theorem relates the moment of

inertia ICM of an object, with respect to an axis through

the center of mass of the object, to the moment of

inertia I of the same object, with respect to an axis that

is parallel to the axis through the center of mass and is
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at a distance d from the axis through the center of mass.

A conceptual statement made by the parallel axis

theorem is one that you probably could have arrived at

by means of common sense, namely that the moment of

inertia of an object with respect to an axis through the

center of mass is smaller than the moment of inertia

about any axis parallel to that one. As you know, the

closer the mass is “packed” to the axis of rotation, the

smaller the moment of inertia; and; for a given object,

per definition of the center of mass, the mass is packed

most closely to the axis of rotation when the axis of

rotation passes through the center of mass. The PAT is

visually shown below, as z represents the axis on which

the objects COM rotates about, z’ is the axis it is now

going to rotate about, and d is the distance between

these two axis’.

Source: Calculus-Based Physics 1, Jeffery W. Schnick.

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7

Steps for finding the MMOI of an object

1. Determine the shape of the object (or shapes, if it a composite

object).

2. Determine which axis the object is rotating about.

3. Find the center of mass for each individual shape.

4. Find the ICM (inertia about its center of mass) for each shape.

5. Determine the distance from the CM of the shapes to the axis

of rotation.

6. Use the Parallel Axis Theorem to find the inertia for each
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shape.

7. Add up all these individuals inertias to find IT.

Example 2:

Find the moment of inertia of a uniform rod with ICM=0.05kgm2,

L=0.08m, and mass=0.250kg, with respect to an axis that is

perpendicular to the rod and passes through at 1/4 of the length of the

rod.

We know the distance (d) to be L/4 = 0.08m / 4 = 0.02m away

from the z axis. Here we present the solution to the problem:

I=ICM + md2

I=0.05 kgm2 + (0.250kg)(0.02m)2

I=0.0501 kgm2

Example 3

A dumbbell consists of two .2 meter diameter spheres, each with a
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mass of 40 kg, attached to the ends of a .6 meter long, 20 kg slender

rod. Determine the mass moment of inertia of the dumbbell about the

y axis shown in the diagram.

Source: mechanicsmap.psu.edu/websites/A2_moment_intergrals/
parallel_axis_theorem/parallelaxistheorem.html

Organize the known and unknown data in a table to complete as you

go:

Find the center of mass:

• For each sphere, the rcm is 0.3m + 1/2 radius = 0.3m + 1/2

(0.2m) = 0.4m

• For the bar, the rcm is at 0.
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Find the inertia about the center of mass for each shape separately.

Use the rectangle equation:

For the sphere:

$$ I_{cm-sph}=\frac{2}{5}mr^2 =\frac{2}{5}*(40kg)*(0.1m)^2 \\

\qquad \quad =0.16kgm^2$$

For the rod,

$$I_{cm-rod}=\frac{1}{12}ml^2 =

\frac{1}{12}*(20kg)*(0.6m)^2\\\qquad \quad = 0.6 kgm^2$$
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Next the parallel axis theorum is needed to change the axis of

rotation from the cm of the sphere to the system cm. The distance

between axes of rotation is 0.3m + 1/2 radius = 0.3m + 1/2 (0.2m) =

0.4m

$$I_{o-sph}=I_{cm-sph}+md^2 = 0.16 kgm^2 + (40kg)*(0.4m)^2

\\\qquad \quad = 6.56kgm^2$$

Finally, add up the parts: the 2 spheres and the cm of the rod:

$$I_{total} = 2 * I_{o-sph}+I_{cm-rod}\\\qquad \quad = 2*(6.56

kgm^2) + (0.6 kgm^2)\\\qquad \underline{I_{total} = 13.72

kgm^2}$$

Source: mechanicsmap.psu.edu/websites/

A2_moment_intergrals/parallel_axis_theorem/

parallelaxistheorem.html

Key Takeaways

Basically: The parallel axis theorem helps you to find the

inertia about a different axis of rotation than the cg, and it

lets you combine multiple objects.

Application: Find the total inertia of shape with multiple

objects.

Looking Ahead: This will be used throughout dynamics.
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7.6 Examples

Here are examples from Chapter 7 to help you understand these

concepts better. These were taken from the real world and supplied

by FSDE students in Summer 2021. If you’d like to submit your own

examples, please send them to the author author eosgood@upei.ca.

Example 7.6.1: All of Ch 7 – Submitted by
William Craine

1. Problem

A person is playing soccer. The ball they

are using has a diameter of 20 cm, and a

mass of 0.45 kg. The person’s leg has a mass

of 18 kg, and their foot has a mass of 8 kg.

Assume that all the shapes are uniform

density.

a) Find the cm for the ball.
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Source:
https://encrypted-tbn0.gs
tatic.com/
images?q=tbn:ANd9GcTM
4e4xHaRSXBdQMGugm1g
ISi2Qgn7rQx_K3w&usqp
=CAU

b) Calculate the mass moment of inertia

(MMOI) for the ball.

c) Find the cm for the person’s leg and foot.

d) Find the MMOI for the person’s leg and

foot on the y-axis about A.

478 | Statics



2. Draw
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3. Knowns and Unknowns

Known:

• mb = 0.45 kg

• db = 20 cm

• mL = 18 kg
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• mf = 8 kg

Unknowns: xb, Ib, xp, Ip x

4. Approach

Find the cm for both objects using arbitrary

coordinates since no origin is given.

Use the sphere MMOI formula for the ball.

Calculate the individual MMOIs for the leg and foot,

then use parallel axis theorem to get each shape’s MMOI

about the system cm, add them, and then use parallel

axis theorem to get MMOI about A.

5. Analysis

Part a (find the center of mass of the ball):
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$$x_b=(10\underline{\hat{i}}+10\

underline{\hat{ j}}+10\underline{\hat{k}})cm$$

Part b (find the MMOI of the ball about its center of

mass):

$$I_{xx}=I_{yy}=I_{zz}=\frac{2}{3}mr^2\\\qquad

\quad=\frac{2}{3}(0.45

kg)(0.1m)^2\\I_b=0.003kgm^2$$

Part c (find the center of mass for the system of the

person’s leg):

Step 1: find the center of mass of the foot ( f)

$$f=\frac{15cm}{2}\underline{\hat{i}}+\frac{7cm}{2}\

underline{\hat{ j}}+\frac{7cm}{2}\underline{\hat{k}}\\f

=(7.5\underline{\hat{i}}+3.5\underline{\hat{ j}}+3.5\

underline{\hat{k}})cm$$

Step 2: find the center of mass of the leg (L)
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$$L_1=(3.5\underline{\hat{i}}+3.5\

underline{\hat{ j}}+15\

underline{\hat{k}})cm\\L_2=(15cm-7cm-1cm)\underlin

e{\hat{i}}+(0cm)\underline{\hat{ j}}+(7cm)\underline{\h
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at{k}}\\\qquad \quad L_2 = (7

\underline{\hat{i}}+(0)\underline{\hat{ j}}+(7)\underline

{\hat{k}} )cm$$

$$\\L=L_1+L_2\\L=(3.5cm+7cm)\underline{\hat{i}}+

(3.5cm+0cm)\underline{\hat{ j}}+(15cm+7cm)\underline{

\hat{k}}\\L=(10.5\underline{\hat{i}}+3.5\

underline{\hat{ j}}+22\underline{\hat{k}})cm$$

Step 3: find the center of mass of the system (P)

$$x_p=\frac{\sum m_i x_i}{\sum

m_i}\\X_p=\frac{m_f\cdot x_f+m_L\cdot

x_L}{m_f+m_L}\\x_p=\frac{8kg\cdot 7.5cm+18kg\

cdot 10.5cm}{8kg+18kg}\\x_p=9.58cm$$

$$y_p=\frac{\sum m_i y_i}{\sum

m_i}\\y_p=\frac{8kg\cdot 3.5cm+18kg\cdot

3.5cm}{8kg+18kg}\\y_p=3.5cm$$

$$z_p=\frac{\sum m_i z_i}{\sum

m_i}\\z_p=\frac{8kg\cdot 3.5cm+18kg\cdot

22cm}{8kg+18kg}\\z_p=16.3cm$$

$$\underline{\underline{P}=(9.58\

underline{\hat{i}}+3.5\underline{\hat{ j}}+16.3\

underline{\hat{k}})cm}$$
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Part d (find the inertia of the person’s leg about point

A):

Step 1: Find the MMOI of the foot about f (Iff)

$$x_f=0.15m\\z_f=0.07m\\m_f=8kg$$

$$I_{ff}=\frac{1}{12}\cdot m\cdot

(x^2+z^2)\\I_{ff}=\frac{1}{12}(8kg)(0.15m^2+0.07m^2)

\\I_{ff}=0.0182kg\; m^2$$

Step 2: Find the MMOI of the foot about P (IPf)

$$

d^2=(0.0208m)^2+(0.128m)^2\\I_{pf}=I_{ff}+m_f(d_f)

^2\\I_{pf}=0.0182kgm^2+8kg[(0.0208m)^2+(0.128m)^

2]\\I_{pf}=0.1527kgm^2$$
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Step 3: Find the MMOI of the leg about L (ILL)

$$r=0.035m\\h=0.3m\\m_L=18kg\\I_{LL}=\frac{1}{

12}\cdot m\cdot

(3_r^2+h^2)\\I_{LL}=\frac{1}{12}\cdot

18kg(3(0.035m)^2+(0.3m)^2)\\I_{LL}=0.1405kgm^2$$

Step 4: Find the MMOI of the leg about P (IPL)

$$r_{LP}=[(9.58-10.5)\underline{\hat{i}}+(3.5-3.5)\un

derline{\hat{ j}}+(16.3-22)\underline{\hat{k}}]cm\\r_{L

P}=(-0.92\underline{\hat{i}}-5.7\

underline{\hat{k}})cm\\I_{PL}=I_{LL}+m(d^2)\\I_{PL}

=0.1405kgm^2+18kg[(0.0092m)^2+(0.057m)^2]\\I_{PL}

=0.2005kgm^2$$

Step 5: Find the MMOI of the entire system about P (IP)

$$I_p=I_{PL}+I_{pf}\\I_p=0.1527kgm^2+0.2005kg\\

I_p=0.3532kgm^2$$

Step 6: Find the MMOI of the entire system about A (IA)

$$A=(10.5\underline{\hat{i}}+3.5\

underline{\hat{ j}}+37\underline{\hat{k}})cm\\P=(9.58\

underline{\hat{i}}+3.5\underline{\hat{ j}}+16.3\

underline{\hat{k}})cm\\r_{AP}=P-

A\\r_{AP}=[(9.58-10.5)\underline{\hat{i}}+(3.5-3.5)\und

erline{\hat{ j}}+(16.3-37)\underline{\hat{k}}]cm\\r_{AP}

=(-0.92\underline{\hat{i}}-20.7\

underline{\hat{k}})cm$$

$$I_A=I_p+m(d^2)\\I_A=0.3532kgm^2+(8kg+18kg)[(
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0.0092m)^2+(0.207m)^2]\\I_A=1.4695kgm^2\\\unde

rline{I_A=1.47kgm^2}$$

6. Review

It makes sense that the numbers are small, since

before the final step, the mass was small, or the distance

to the new axis was small.

Example 7.6.2 Inertia – Submitted by Luke
McCarvill

1. Problem

A figure skater with a mass of 60 kg is

about to perform a spin about her long axis

(z). She is 167 cm tall, and her body can be

approximated as a circular cylinder of 30 cm

diameter while her limbs are at her side, and
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a circular cylinder of 60 cm diameter while

her arms (and one leg) are outstretched.

a) What should she do in order to generate

the highest angular acceleration, assuming

she can generate a net torque of 200 Nm?

Does lowering her height increase or

decrease her angular acceleration?

b) How fast will she be spinning after 0.5

seconds of her maximum vs minimum

accelerations, assuming she starts from zero

(⍵0 = 0 rad/sec)?
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2. Draw
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3. Knowns and Unknowns

Knowns:
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• m = 60 kg

• ΣM = 200Nm

• h = 167cm

• d1 = 30cm

• d2 = 60cm

• t = 0.5sec

• Izz = ½ mr2

• ΣM = I∝
• ⍵0 = 0rad/sec

Unknowns:

• ∝1 = ?

• ∝2 = ?

• Izz1 = ?

• Izz2 = ?

• ⍵1 = ?

• ⍵2 = ?

4. Approach

I’ll be using MMOI for circular cylinders, as well as the

sum of moments/torque equaling MMOI times angular

acceleration, as well as acceleration equaling change in

velocity over time.

5. Analysis

Part a:

Step 1: find the inertia when the arms are hugged to the

body

Izz1 = 0.5 (60kg) (0.15m)2

Izz1= 0.675 kg m2
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Step 2: find the inertia when the arms are spread out

Izz2 = 0.5(60kg)(0.3m)2

Izz2 = 2.7 kg m2

Step 3: find the angular acceleration for both cases

ΣM = I∝ therefore ΣM/I = ∝

∝1 = ΣM / Izz1

∝1 = 200 Nm / 0.675 kg m2

∝1 ≈ 296.296 rad/sec2

∝2 = ΣM / Izz2

∝2 = 200Nm/2.7 kg m2

∝2 ≈ 74.074 rad/sec2

The acceleration when the skater had her arms close

to her body was about 296 rad/sec2, while that when

she had her arms spread out was about 74 rad/sec2.

Therefore, having her limbs closer to her body will give
her a much higher angular acceleration!

As seen in the equation Izz = ½ m r2, her height is
arbitrary, thus lowering her height would not change
the inertia nor will it change her angular acceleration.

492 | Statics



Part b:

∝ = ⍵/t therefore ∝*t = ⍵

⍵1 = 296.296 s-2(0.5s)

⍵1 = 148.148 rad/sec

⍵2 = 74.074 s-2(0.5s)

⍵2 = 37.037 rad/sec

Given that these are in radians per second, let’s

convert this to rotations per second to make it more

meaningful. To do so, simply divide by 2pi since there

are 2pi radians per rotation. Thus, with her arms in, she

can achieve about 23.6 rotations per second after 0.5

seconds of acceleration, compared to about 5.9

rotations per second with her limbs out. This is on par

with an Olympian according to this site.

6. Review

It makes sense that they spin faster when their limbs

are hugged to their body; we can try this at home with a

swivel chair!
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Engineering Textbooks:

Intro Engineering: https://eng.libretexts.org/Bookshelves/

Introduction_to_Engineering/

EGR_1010%3A_Introduction_to_Engineering_for_Engineers_an

d_Scientists/14%3A_Fundamentals_of_Engineering/

14.11%3A_Mechanics/14.11.01%3A_Statics

Mechanics Map Digital Textbook: Jacob Moore, et al.

http://www.oercommons.org/courses/mechanics-map-open-

mechanics-textbook/view. Creative Commons Attribution.

Structural Analysis: https://eng.libretexts.org/Bookshelves/

Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames

Internal Forces in Beams and Frames, Libretexts.

https://eng.libretexts.org/Bookshelves/Civil_Engineering/

Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/

1.04%3A_Internal_Forces_in_Beams_and_Frames Creative

Commons.

Physics Textbooks:

University Physics Volume 1:

https://courses.lumenlearning.com/suny-osuniversityphysics/

Introductory Physics : Building Models to Describe Our World

(pdf download): https://openlibrary.ecampusontario.ca/catalogue/

item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb

Information at the foundation of modern science and technology

from the Physical Measurement Laboratory of NIST:

https://www.physics.nist.gov/cuu/Units/index.html

“UCD: Physics 9A – Classical Mechanics” by Tom Weideman,

LibreTexts is licensed under CC BY-SA.

Source: https://phys.libretexts.org/Courses/

University_of_California_Davis/

UCD%3A_Physics_9A__Classical_Mechanics
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Math Textbook:

Key Concepts of Intermediate Level Math (pdf download):

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=d8bdc88b-5439-4652-b4bb-2948f0d5c625

Calculus Volume 1: https://openstax.org/books/calculus-

volume-1/pages/1-3-trigonometric-functions

Calculus Based Physics, Jeffrey W. Schnick,

https://openlibrary.ecampusontario.ca/catalogue/

item/?id=ce74a181-ccde-491c-848d-05489ed182e7 Creative

Commons Attribution.
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