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1.7 Problem Solving Process


  
  Learning how to use a structured problem solving process will help you to be more organized and support your future courses. Also, it will train your brain how to approach problems. Just like basketball players practice jump shots over and over to train their body how to act in high pressure scenarios, if you are comfortable and familiar with a structured problem solving process, when you’re in a high pressure situation like a test, you can just jump into the problem like muscle memory.

  6 Step Problem Solving Method:

  
    	Problem 	Write out the answer with all necessary information that is given to you. It feels like it takes forever, but it’s important to have the problem and solution next to each other.



    	Draw 	Draw the problem, this is usually a free-body diagram (don’t forget a coordinate frame). Eventually, as you get further into the course, you might need a few drawings. One would be a quick sketch of the problem in the real world, then modelling it into a simplified engineering drawing, and finally the free-body diagram.



    	Known and Unknowns 	Write out a list of the known/given values with the variable and unit, i.e m = 14 kg  (variable = number unit)
 
	Write out a list of the unknown values that you will have to solve for in order to solve the problem
	You can also add any assumptions you made here that change the problem.
	Also state any constants, i.e. g = 32.2 ft/m2  or g = 9.81 m/s2
	This step helps you to have all of the information in one place when you solve the problem. It’s also important because each number should include units, so you can see if the units match or if you need to convert some numbers so they are all in English or SI. This also gives you the variables side by side to ensure they are unique (so you don’t accidentally have 2 ‘d’ variables and can rename one with a subscript).



    	Approach 	Write a simple sentence or phrase explaining what method/approach you will be using to solve the problem.
	For example: ‘use method of joints’, or equilibrium equations for a rigid body, MMOI for a certain shape, etc.
	This is going to be more important when you get to the later chapters and especially next semester in Dynamics where you can solve the same problem many ways. Might as well practice now!



    	Analysis 	This is the actual solving step. This is where you show all the work you have done to solve the problem.
	When you get an answer, restate the variable you are solving for, include the unit, and put a box around the answer.



    	Review 	Write a simple sentence explaining why (or why not) your answer makes sense. Use logic and common sense for this step.
	When possible, use a second quick numerical analysis to verify your answer. This is the “gut check” to do a quick calculation to ensure your answer is reasonable.
	This is the most confusing step as students often don’t know what to put here and up just writing ‘The number looks reasonable’. This step is vitally important to help you learn how to think about your answer. What does that number mean? What is it close to? For example, if you find that x = 4000 m, that’s a very large distance! In the review, I would say, ‘the object is 4 km long which is reasonable for a long bridge’. See how this is compared to something similar? Or you could do a second calculation to verify the number is correct, such as adding up multiple parts of the problem to confirm the total length is accurate i.e. ‘x + y + z = total, yes it works!’



  

  Additional notes for this course:

  
    	It’s important to include the number and label the steps so it’s clear what you’re doing, as shown in the example below.

    	It’s okay if you make mistakes, just put a line through it and keep going.

    	Remember your header should include your name, the page number, total number of pages, the course number, and the assignment number. If a problem spans a number of pages, you should include it in the header too.

  

  
    [image: ]
  

  
    
      Key Takeaways

    

     

    Basically: Use a 6-step structured problem solving process: 1. Problem, 2. Draw, 3. Known & Unknown, 4. Approach, 5. Analysis (Solve), 6. Review

    Application: In your future job there is likely a structure for analysis reports that will be used. Each company has a different approach, but most have a standard that should be followed. This is good practice.

    Looking ahead: This will be part of every homework assignment.

     

  

   

  Written by Gayla & Libby

  




  
  






Chapter 3: Rigid Body Basics


  
  In this chapter, you will learn some fundamental tools for rigid bodies, what I call the rigid body basics. Recall, rigid bodies have mass and a particular shape or size. Here are the sections in this Chapter:

  
    	3.1 Right Hand Rule – a way to help you make accurate coordinate frames

    	3.2 Couples – rotational motion created from two forces

    	3.3 Distributed Loads – a way to express a force over a certain area 

    	3.4 Reactions & Supports – how to model the constraints that keep an object in place

    	3.5 Indeterminate Loads – how to determine if there are too many forces

    	3.6 Examples – examples from your peers

  

  Here are the important equations for this chapter.
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Chapter 5: Trusses


  
  This chapter will introduce you to a special type of structure called a ‘truss’. You’ll analyze these structures more in your Structures course, but for Statics you will need to know how to calculate the force in each member, using two methods: method of joints and method of sections. At first this might seem confusing, but there is something quite elegant and magical about the method once you understand it. Here are the sections in this Chapter:

  
    	5.1 Trusses Introduction – what are trusses?

    	5.2 Method of Joints – one method of finding the forces in the truss

    	5.3 Method of Sections– another method to find the forces in the truss

    	5.4 Zero-Force Members – how to identify members with no forces

    	5.5 Examples  – Examples from your peers

  

  Here are the important equations for this chapter:
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4.1 External Forces


  
  When we say ‘forces’ in Statics, we are generally talking about external forces (such as the reaction forces discussed in the previous chapter) and internal forces (that we will discuss in Chapter 5 and 6). Generally, external forces include:

  
    	gravitational force (or weight)

    	normal force

    	frictional force

    	spring force

    	applied force (such as reaction forces & tension) – this also includes applied moments such as from motors

  

  In science class you probably learned about the fundamental forces of nature: gravitational, electromagnetic, and weak and strong nuclear forces. Normal force, friction, spring, and applied forces are all types of electromagnetic forces. The charged and neutral particles attract or repel each other. For example, the reason your laptop doesn’t fall through the table is that the electrons in the atoms of the two objects are repelling each other, and both objects are being pulled down by another fundatmental force: gravitational force. See this page for more information. The four fundamental forces are beyond the scope of this Statics class, but ti’s important to know the background how the external forces operate. In this class, we’ll use our understanding of the the external forces to learn how to quantify the forces and calculate the value of other forces.

  

  To calculate each force individually, use the following equations:

  
    
      	Gravity: Fg = mg

      	Normal: Calculated

      	Friction: Ff = mN

      	Spring: FS = -kx

      	Applied: Measured or calculated

    

     

  

  
    Forces are given many names, such as push, pull, thrust, and weight. Traditionally, forces have been grouped into several categories and given names relating to their source, how they are transmitted, or their effects. Several of these categories are discussed in this section.

    Normal Force

    Weight (also called the force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from falling. You must support the weight of a heavy object by pushing up on it when you hold it stationary. But how do inanimate objects like a table support the weight of a mass placed on them, such as shown in the figure below? When the bag of dog food is placed on the table, the table sags slightly under the load. This would be noticeable if the load were placed on a card table, but even a sturdy oak table deforms when a force is applied to it. Unless an object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or a trampoline or diving board). The greater the deformation, the greater the restoring force. Thus, when the load is placed on the table, the table sags until the restoring force becomes as large as the weight of the load. At this point, the net external force on the load is zero. That is the situation when the load is stationary on the table. The table sags quickly and the sag is slight, so we do not notice it. But it is similar to the sagging of a trampoline when you climb onto it.

    
      [image: ]
    

    We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the load, as we assumed in a few of the previous examples. If the force supporting the weight of an object, or a load, is perpendicular to the surface of contact between the load and its support, this force is defined as a normal force and here is given by the symbol [latex]\vec N[/latex] [image: ]. (This is not the newton unit for force, N.) The word normal means perpendicular to a surface. This means that the normal force experienced by an object resting on a horizontal surface can be expressed in vector form as follows:

    $$\vec N=-m\vec g$$

    In scalar form, this becomes:

    $$N=mg$$

    The normal force can be less than the object’s weight if the object is on an incline.

    When an object rests on an incline that makes an angle θ with the horizontal, the force of gravity acting on the object is divided into two components: a force acting perpendicular to the plane, wy, and a force acting parallel to the plane, wx. The normal force [latex]\vec N[/latex] [image: ]is typically equal in magnitude and opposite in direction to the perpendicular component of the weight wy. The force acting parallel to the plane, wx, causes the object to accelerate down the incline.

    
      [image: ]
    

    Be careful when resolving the weight of the object into components. If the incline is at an angle θ to the horizontal, then the magnitudes of the weight components are:

    $$w_x=w\sin\theta=mg\sin\theta$$

    and

    $$w_y=w\cos\theta=mg\cos\theta$$

    We use the second equation to write the normal force experienced by an object resting on an inclined plane:

    $$N=mg\cos\theta$$

    Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, we draw the right angle formed by the three weight vectors. The angle θ of the incline is the same as the angle formed between w and wy. Knowing this property, we can use trigonometry to determine the magnitude of the weight components:

    $$\cos\theta=\frac{w_y}{w},\:w_y=w\cos\theta=mg\cos\theta\\\sin\theta=\frac{w_z}{w},\:w_x=w\sin\theta=mg\sin\theta$$

    Tension

    A tension is a force along the length of a medium; in particular, it is a pulling force that acts along a stretched flexible connector, such as a rope or cable. The word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called tendons.

    Any flexible connector, such as a string, rope, chain, wire, or cable, can only exert a pull parallel to its length; thus, a force carried by a flexible connector is a tension with a direction parallel to the connector. Tension is a pull in a connector. Consider the phrase: “You can’t push a rope.” Instead, tension force pulls outward along the two ends of a rope.

    Consider a person holding a mass on a rope. If the 5.00-kg mass in the figure is stationary, then its acceleration is zero and the net force is zero. The only external forces acting on the mass are its weight and the tension supplied by the rope. Thus,

    

    $$F_{net}=T-w=0$$

    

    where T and w are the magnitudes of the tension and weight, respectively, and their signs indicate direction, with up being positive. As we proved using Newton’s second law, the tension equals the weight of the supported mass:

    

    $$T=w=mg$$

    

    Thus, for a 5.00-kg mass (neglecting the mass of the rope), we see that

    

    $$T=mg=(5.00kg)(9.80m/s^2)=49.0N$$

    

    
      If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct observation and measure of the tension force in the rope.

      
        [image: ]
      

      Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a tendon, or a bicycle brake cable. If there is no friction, the tension transmission is undiminished; only its direction changes, and it is always parallel to the flexible connector, as shown below:

      
        [image: ]
      

      If we wish to create a large tension, all we have to do is exert a force perpendicular to a taut flexible connector. We can see that the tension in the rope is related to the force acting perpendicularly in the following way:

      $$T=\frac{w}{2\sin\theta}$$

      We can extend this expression to describe the tension T created when a perpendicular force (F⊥) is exerted at the middle of a flexible connector:

      $$T=\frac{F\perp}{2\sin\theta}$$

      The angle between the horizontal and the bent connector is represented by θ. In this case, T becomes large as θ approaches zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were horizontal (i.e., θ=0 and sin θ=0). For example, the image below shows a situation where we wish to pull a car out of the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as straight as possible. The tension in the chain is given by[latex]T=\frac{F\perp}{2\sin\theta}[/latex] and since θ is small, Tis large. This situation is analogous to the tightrope walker, except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where F⊥ is applied.

      
        [image: ]
      

      Friction

      Friction is a resistive force opposing motion or its tendency. Imagine an object at rest on a horizontal surface. The net force acting on the object must be zero, leading to equality of the weight and the normal force, which act in opposite directions. If the surface is tilted, the normal force balances the component of the weight perpendicular to the surface. If the object does not slide downward, the component of the weight parallel to the inclined plane is balanced by friction. Friction is discussed in greater detail in the next chapter.

      Spring Force

      A spring is a special medium with a specific atomic structure that has the ability to restore its shape, if deformed. To restore its shape, a spring exerts a restoring force that is proportional to and in the opposite direction in which it is stretched or compressed. This is the statement of a law known as Hooke’s law, which has the mathematical form

      $$\vec F=-k\vec x$$

      The constant of proportionality k is a measure of the spring’s stiffness. The line of action of this force is parallel to the spring axis, and the sense of the force is in the opposite direction of the displacement vector. The displacement must be measured from the relaxed position; x=0 when the spring is relaxed.

      
        [image: ]
      

    

    

    Source: University Physics Volume 1, Openstax CNX.  https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/5-6-common-forces/

  

   

   

  
    
      
        Key Takeaways

      

      
        
          	Basically: External forces include: gravitational, applied, normal, frictional, and spring.

          	Application: Everything. A book on a table, Tigger bouncing on his tail, a shooting star, and a soccer ball rolling into the goal.

          	Looking Ahead: Ch 5 and 6 will look at internal forces. Section 4.3 will use the known forces to calculate the unknown forces. Section 4.2 will model the forces on a diagram.

        

      

    

     

  

  




  
  





3.2 Couples


  
  
    A couple is a set of equal and opposite forces that exerts a net moment on an object but no net force. Because the couple exerts a net moment without exerting a net force, couples are also sometimes called pure moments.

    
      [image: ]
    

    The moment exerted by a couple also differs from the moment exerted by a single force in that it is independent of the location you are taking the moment about. In the example below we have a couple acting on a beam. Each force has a magnitude F and the distance between the two forces is d.

    
      [image: ]
    

    Now we have some point A, which is distance x from the first of the two forces. If we take the moment of each force about point A, and then add these moments together for the net moment about point A we are left with the following formula.

    $$M=-(F\ast x)+(F\ast(x+d))$$

    If we rearrange and simplify the formula above, we can see that the variable x actually disappears from the equation, leaving the net moment equal to the magnitude of the forces (F) times the distance between the two forces (d).

    $$M=-(F\ast x)+(F\ast x)+(F\ast d)\\\\M=(F\ast d)$$

    This means that no matter what value of x we have, the magnitude of the moment exerted by the couple will be the same. The magnitude of the moment due to the couple is independent of the location we are taking the moment about. This will also work in two or three dimensions as well. The magnitude of the moment due to a couple will always be equal to the magnitude of the forces times the perpendicular distance between the two forces.

    Source: Engineering Mechanics, Jacob Moore et al., http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-3_couples/couples.html

  

  
    
      Key Takeaways

    

    
      Basically: Couples are made from two forces in opposite directions that create a moment around an axis

      Application: Turning the steering wheel of your car, you push one hand up and the other down to turn the wheel. To calculate the size of the couple, you multiply the force exerted by the distance between your hands (the diameter of the wheel).

      Looking Ahead: While moments are more common in Ch 4 rigid body equations, it’s important to know what couples are and how to find them.

    

  

   

  




  
  





7.6 Examples



  
  Here are examples from Chapter 7 to help you understand these concepts better. These were taken from the real world and supplied by FSDE students in Summer 2021. If you’d like to submit your own examples, please send them to the author author eosgood@upei.ca.

  

  Example 7.6.1: All of Ch 7 – Submitted by William Craine

  
    
      1. Problem
    

    
      A person is playing soccer. The ball they are using has a diameter of 20 cm, and a mass of 0.45 kg. The person’s leg has a mass of 18 kg, and their foot has a mass of 8 kg. Assume that all the shapes are uniform density.

      a) Find the cm for the ball.

      b) Calculate the mass moment of inertia (MMOI) for the ball.

      c) Find the cm for the person’s leg and foot.

      d) Find the MMOI for the person’s leg and foot on the y-axis about A.

      
        [image: ]
        Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTM4e4xHaRSXBdQMGugm1gISi2Qgn7rQx_K3w&usqp=CAU

      

      
        [image: ]
      

      

      

    

    

    
      2. Draw
    

    
      [image: ]
    

    
      [image: ]
    

    

    

    
      3. Knowns and Unknowns
    

    Known:

    
      	mb = 0.45 kg

      	db = 20 cm

      	mL = 18 kg

      	mf = 8 kg

    

    Unknowns: xb, Ib, xp, Ip x

    
      4. Approach
    

    Find the cm for both objects using arbitrary coordinates since no origin is given.

    Use the sphere MMOI formula for the ball.

    Calculate the individual MMOIs for the leg and foot, then use parallel axis theorem to get each shape’s MMOI about the system cm, add them, and then use parallel axis theorem to get MMOI about A.

    
      5. Analysis
    

    Part a (find the center of mass of the ball):

    
      [image: ]
    

    $$x_b=(10\underline{\hat{i}}+10\underline{\hat{j}}+10\underline{\hat{k}})cm$$

    

    Part b (find the MMOI of the ball about its center of mass):

    $$I_{xx}=I_{yy}=I_{zz}=\frac{2}{3}mr^2\\\qquad \quad=\frac{2}{3}(0.45 kg)(0.1m)^2\\I_b=0.003kgm^2$$

    

    Part c (find the center of mass for the system of the person’s leg):

    
      Step 1: find the center of mass of the foot (f)
    

    
      [image: ]
    

    $$f=\frac{15cm}{2}\underline{\hat{i}}+\frac{7cm}{2}\underline{\hat{j}}+\frac{7cm}{2}\underline{\hat{k}}\\f=(7.5\underline{\hat{i}}+3.5\underline{\hat{j}}+3.5\underline{\hat{k}})cm$$

    

    
      Step 2: find the center of mass of the leg (L)
    

    
      [image: ]
    

    
      [image: ]
    

    $$L_1=(3.5\underline{\hat{i}}+3.5\underline{\hat{j}}+15\underline{\hat{k}})cm\\L_2=(15cm-7cm-1cm)\underline{\hat{i}}+(0cm)\underline{\hat{j}}+(7cm)\underline{\hat{k}}\\\qquad \quad L_2 = (7 \underline{\hat{i}}+(0)\underline{\hat{j}}+(7)\underline{\hat{k}} )cm$$

    $$\\L=L_1+L_2\\L=(3.5cm+7cm)\underline{\hat{i}}+(3.5cm+0cm)\underline{\hat{j}}+(15cm+7cm)\underline{\hat{k}}\\L=(10.5\underline{\hat{i}}+3.5\underline{\hat{j}}+22\underline{\hat{k}})cm$$

    

    

    
      Step 3: find the center of mass of the system (P)
    

    $$x_p=\frac{\sum m_i x_i}{\sum m_i}\\X_p=\frac{m_f\cdot x_f+m_L\cdot x_L}{m_f+m_L}\\x_p=\frac{8kg\cdot 7.5cm+18kg\cdot 10.5cm}{8kg+18kg}\\x_p=9.58cm$$

    

    $$y_p=\frac{\sum m_i y_i}{\sum m_i}\\y_p=\frac{8kg\cdot 3.5cm+18kg\cdot 3.5cm}{8kg+18kg}\\y_p=3.5cm$$

    $$z_p=\frac{\sum m_i z_i}{\sum m_i}\\z_p=\frac{8kg\cdot 3.5cm+18kg\cdot 22cm}{8kg+18kg}\\z_p=16.3cm$$

    $$\underline{\underline{P}=(9.58\underline{\hat{i}}+3.5\underline{\hat{j}}+16.3\underline{\hat{k}})cm}$$

    
      [image: ]
    

    Part d (find the inertia of the person’s leg about point A):

    
      Step 1: Find the MMOI of the foot about f (Iff)
    

    $$x_f=0.15m\\z_f=0.07m\\m_f=8kg$$

    $$I_{ff}=\frac{1}{12}\cdot m\cdot (x^2+z^2)\\I_{ff}=\frac{1}{12}(8kg)(0.15m^2+0.07m^2)\\I_{ff}=0.0182kg\; m^2$$

    

    
      Step 2: Find the MMOI of the foot about P (IPf)
    

    $$ d^2=(0.0208m)^2+(0.128m)^2\\I_{pf}=I_{ff}+m_f(d_f)^2\\I_{pf}=0.0182kgm^2+8kg[(0.0208m)^2+(0.128m)^2]\\I_{pf}=0.1527kgm^2$$

    

    
      Step 3: Find the MMOI of the leg about L (ILL)
    

    $$r=0.035m\\h=0.3m\\m_L=18kg\\I_{LL}=\frac{1}{12}\cdot m\cdot (3_r^2+h^2)\\I_{LL}=\frac{1}{12}\cdot 18kg(3(0.035m)^2+(0.3m)^2)\\I_{LL}=0.1405kgm^2$$

    

    
      Step 4: Find the MMOI of the leg about P (IPL)
    

    $$r_{LP}=[(9.58-10.5)\underline{\hat{i}}+(3.5-3.5)\underline{\hat{j}}+(16.3-22)\underline{\hat{k}}]cm\\r_{LP}=(-0.92\underline{\hat{i}}-5.7\underline{\hat{k}})cm\\I_{PL}=I_{LL}+m(d^2)\\I_{PL}=0.1405kgm^2+18kg[(0.0092m)^2+(0.057m)^2]\\I_{PL}=0.2005kgm^2$$

    

    
      Step 5: Find the MMOI of the entire system about P (IP)
    

    $$I_p=I_{PL}+I_{pf}\\I_p=0.1527kgm^2+0.2005kg\\I_p=0.3532kgm^2$$

    

    
      Step 6: Find the MMOI of the entire system about A (IA)
    

    $$A=(10.5\underline{\hat{i}}+3.5\underline{\hat{j}}+37\underline{\hat{k}})cm\\P=(9.58\underline{\hat{i}}+3.5\underline{\hat{j}}+16.3\underline{\hat{k}})cm\\r_{AP}=P-A\\r_{AP}=[(9.58-10.5)\underline{\hat{i}}+(3.5-3.5)\underline{\hat{j}}+(16.3-37)\underline{\hat{k}}]cm\\r_{AP}=(-0.92\underline{\hat{i}}-20.7\underline{\hat{k}})cm$$

    $$I_A=I_p+m(d^2)\\I_A=0.3532kgm^2+(8kg+18kg)[(0.0092m)^2+(0.207m)^2]\\I_A=1.4695kgm^2\\\underline{I_A=1.47kgm^2}$$

    
      6. Review
    

    It makes sense that the numbers are small, since before the final step, the mass was small, or the distance to the new axis was small.

  

  

  Example 7.6.2 Inertia – Submitted by Luke McCarvill

  
    
      1. Problem
    

    
      A figure skater with a mass of 60 kg is about to perform a spin about her long axis (z). She is 167 cm tall, and her body can be approximated as a circular cylinder of 30 cm diameter while her limbs are at her side, and a circular cylinder of 60 cm diameter while her arms (and one leg) are outstretched.

      a) What should she do in order to generate the highest angular acceleration, assuming she can generate a net torque of 200 Nm? Does lowering her height increase or decrease her angular acceleration?

      b) How fast will she be spinning after 0.5 seconds of her maximum vs minimum accelerations, assuming she starts from zero (⍵0 = 0 rad/sec)?

      

      
        [image: ]
        Annotated from original source: https://commons.wikimedia.org/wiki/File:2019_Internationaux_de_France_Friday_ladies_SP_group_1_Starr_ANDREWS_8D9A6706.jpg

      

      

    

    

    
      2. Draw
    

    
      [image: ]
      [image: ]
    

    
      3. Knowns and Unknowns
    

    Knowns:

    
      	m = 60 kg

      	ΣM = 200Nm

      	h = 167cm

      	d1 = 30cm

      	d2 = 60cm

      	t = 0.5sec

      	Izz = ½ mr2

      	ΣM = I∝

      	⍵0 = 0rad/sec

    

    Unknowns:

    
      	∝1 = ?

      	∝2 = ?

      	Izz1 = ?

      	Izz2 = ?

      	⍵1 = ?

      	⍵2 = ?

    

    
      4. Approach
    

    I’ll be using MMOI for circular cylinders, as well as the sum of moments/torque equaling MMOI times angular acceleration, as well as acceleration equaling change in velocity over time.

    
      5. Analysis
    

    Part a:

    
      Step 1: find the inertia when the arms are hugged to the body
    

    Izz1 = 0.5 (60kg) (0.15m)2 

    Izz1= 0.675 kg m2

    

    
      Step 2: find the inertia when the arms are spread out
    

    Izz2 = 0.5(60kg)(0.3m)2

    Izz2 = 2.7 kg m2

    

    
      Step 3: find the angular acceleration for both cases
    

    ΣM = I∝ therefore ΣM/I = ∝

    

    ∝1 = ΣM / Izz1

    ∝1 = 200 Nm / 0.675 kg m2

    ∝1 ≈ 296.296 rad/sec2

    

    ∝2 = ΣM / Izz2

    ∝2 = 200Nm/2.7 kg m2

    ∝2 ≈ 74.074 rad/sec2 

    

    The acceleration when the skater had her arms close to her body was about 296 rad/sec2, while that when she had her arms spread out was about 74 rad/sec2. Therefore, having her limbs closer to her body will give her a much higher angular acceleration!

    As seen in the equation Izz = ½ m r2, her height is arbitrary, thus lowering her height would not change the inertia nor will it change her angular acceleration.

    

    Part b:

    ∝ = ⍵/t therefore ∝*t = ⍵

    

    ⍵1 = 296.296 s-2(0.5s)

    ⍵1 = 148.148 rad/sec

    

    ⍵2 = 74.074 s-2(0.5s)

    ⍵2 = 37.037 rad/sec

    

    Given that these are in radians per second, let’s convert this to rotations per second to make it more meaningful. To do so, simply divide by 2pi since there are 2pi radians per rotation. Thus, with her arms in, she can achieve about 23.6 rotations per second after 0.5 seconds of acceleration, compared to about 5.9 rotations per second with her limbs out. This is on par with an Olympian according to this site.

    
      6. Review
    

    It makes sense that they spin faster when their limbs are hugged to their body; we can try this at home with a swivel chair!

  

  

  





  
  





1.4 Dot Product


  
  A dot product produces a single number to describe the product of two vectors. If you haven’t taken linear algebra yet, this may be a new concept. This is a form of multiplication that is used to calculate work, unit vectors, and to find the angle between two vectors.

  [latex]\vec A\cdot \vec B=|\vec A||\vec B|\cos\theta[/latex]

   

  
    A vector can be multiplied by another vector but may not be divided by another vector. There are two kinds of products of vectors used broadly in physics and engineering. One kind of multiplication is a scalar multiplication of two vectors. Taking a scalar product of two vectors results in a number (a scalar), as its name indicates. Scalar products are used to define work and energy relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as a scalar product of the force vector with the displacement vector. A quite different kind of multiplication is a vector multiplication of vectors. Taking a vector product of two vectors returns as a result a vector, as its name suggests. Vector products are used to define other derived vector quantities. For example, in describing rotations, a vector quantity called torque is defined as a vector product of an applied force (a vector) and its distance from pivot to force (a vector). It is important to distinguish between these two kinds of vector multiplications because the scalar product is a scalar quantity and a vector product is a vector quantity.

    Scalar multiplication of two vectors yields a scalar product.

    
      
        
          Dot Product
        
      

      The scalar product [latex]\vec A\cdot \vec B[/latex] of two vectors [latex]\vec A \text{ and } \vec B[/latex] is a number defined by the equation:

      [latex]\vec A\cdot \vec B=|\vec A||\vec B| \cos \phi[/latex]

      where ϕ is the angle between the vectors. The scalar product is also called the dot product because of the dot notation that indicates it.

    

    When the vectors are given in their vector component forms:

    $$\vec A=A_x\underline{\hat{i}}+A_y\underline{\hat{j}}+A_z\underline{\hat{k}}\text{  and  }\vec B=B_x\underline{\hat{i}}+B_y\underline{\hat{j}}+B_z\underline{\hat{k}}$$

    we can compute their scalar product as follows:

    $$\vec A\cdot\vec B=(A_x\underline{\hat{i}}+A_y\underline{\hat{j}}+A_z\underline{\hat{k}})\cdot(B_x\underline{\hat{i}}+B_y\underline{\hat{j}}+B_z\underline{\hat{k}})\\=A_xB_x\underline{\hat{i}}\cdot\underline{\hat{i}}+A_xB_y\underline{\hat{i}}\cdot\underline{\hat{j}}+A_xB_z\underline{\hat{i}}\cdot\underline{\hat{k}}\\+A_yB_x\underline{\hat{j}}\cdot\underline{\hat{i}}+A_yB_y\underline{\hat{j}}\cdot\underline{\hat{j}}+A_yB_z\underline{\hat{j}}\cdot\underline{\hat{k}}\\+A_zB_x\underline{\hat{k}}\cdot\underline{\hat{i}}+A_zB_y\underline{\hat{k}}\cdot\underline{\hat{j}}+A_zB_z\underline{\hat{k}}\cdot\underline{\hat{k}}$$

    Since scalar products of two different unit vectors of axes give zero, and scalar products of unit vectors with themselves give one, there are only three nonzero terms in this expression. Thus, the scalar product simplifies to:

    [latex]\vec A\cdot\vec B=A_xB_x+A_yB_y+A_zB_z[/latex]

    We can use the equation below to find the angle between two vectors. When we divide [latex]\vec A\cdot\vec B=|\vec A||\vec B| \cos\phi[/latex] by [latex]|\vec A || \vec B|[/latex] , we obtain the equation for cos(ϕ), into which we substitute the equation from above:

    $$\cos\phi=\frac{\vec A\cdot\vec B}{|\vec A||\vec B| }=\frac{A_xB_x+A_yB_y+A_zB_z}{|\vec A||\vec B| }$$

    Angle ϕ between vectors [latex]\vec A \text{ and }\vec B[/latex] is obtained by taking the inverse cosine of the expression above. 

     

    Source: University Physics Volume 1, OpenStax CNX, https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/2-4-products-of-vectors (many examples at this page).

  

   

  
    But what IS it?
  

  [image: ]The dot product is the component of vector A along B ( |A| cos Θ ) times the magnitude (size of B). OR, it’s the component of B on A times the magnitude of A. Visually this can be seen in the figure.[1]


  There is a nice mathematical proof on page 169 of Calculus-Based Physics. 

  One neat thing about the dot product is that A • B = B • A

  An example of a dot product is in a solar panel. To maximize efficiency, the rays coming from the sun should be perpendicular to the panels, that is, straight on. You could use the dot product between a vector of the sun’s rays (yellow in the image below) and the unit vector perpendicular to the surface (green in the image) to calculate what portion of a ray that comes in at an angle produces energy.

   

  
    [image: ]
    Arrows added to photo from Source: https://www.pxfuel.com/en/free-photo-ouswv

  

  
    

  

  
    
      
        Key Takeaways

      

      
        Basically: Dot product is a method to find a number that is a product of two vectors.

        Application: Two ropes attached to a sign are being pulled in different directions. To find the angle between them, use the dot product of the two vectors.

        Looking ahead: We will use the dot product in Section 2.3 on particle equilibrium equations (and more in dynamics next semester).

      

    

     

  

  

  
    
      	Source: https://en.wikipedia.org/wiki/Dot_product#/media/File:Dot_Product.svg ↵


    

  

  




  
  




Contents
	Introduction

	Chapter 1: Fundamental Concepts

	1.1 Preparatory Concepts	1.1.1 Scalar vs. Vector
	1.1.2 Newton’s Laws
	1.1.3 Units
	1.1.4 Measurement Conversions
	1.1.5 Weight vs. Mass
	1.1.6 Pythagorean Theorem
	1.1.7 Sine/Cosine Law’s



	1.2 XYZ Coordinate Frame	1.2.1 Cartesian Coordinate Frame in 2D
	1.2.2. Cartesian Coordinate Frame in 3D



	1.3 Vectors	1.3.1 Vector Components
	1.3.2 Componentizing a Vector
	1.3.3 Position Vector
	1.3.4 Vector Math



	1.4 Dot Product

	1.5 Cross Products

	1.6 Torque/Moment	1.6.1 Moments
	1.6.2 Scalar Method in 2 Dimensions
	1.6.3 Vector Method in 3 Dimensions



	1.7 Problem Solving Process

	1.8 Examples	Example 1.8.1: Vectors, Submitted by Tyson Ashton-Losee
	Example 1.8.2: Vectors, Submitted by Brian MacDonald
	Example 1.8.3: Dot product and cross product, submitted by Anonymous ENGN 1230 Student
	Example 1.8.4: Torque, Submitted by Luke McCarvill
	Example 1.8.5: Torque, submitted by Hamza Ben Driouech
	Example 1.8.6: Bonus Vector Material, Submitted by Liam Murdock



	Chapter 2: Particles

	2.1 Particle & Rigid Body

	2.2 Free Body Diagrams for Particles

	2.3 Equilibrium Equations for Particles

	2.4. Examples

	Chapter 3: Rigid Body Basics

	3.1 Right Hand Rule	3.1.1 The Whole-Hand Method
	3.1.2 Right Hand Rule and Torque
	3.1.3 Three-Finger Configuration



	3.2 Couples

	3.3 Distributed Loads	3.3.1 Intensity
	3.3.2 Equivalent Point Load & Location
	3.3.3 Composite Distributed Loads



	3.4 Reactions & Supports

	3.5 Indeterminate Loads

	3.6 Examples	Example 3.6.1: Reaction Forces, Submitted by Andrew Williamson
	Example 3.6.2: Couples, Submitted by Kirsty MacLellan
	Example 3.6.3: Distributed Load, Submitted by Luciana Davila



	Chapter 4: Rigid Bodies

	4.1 External Forces

	4.2 Rigid Body Free Body Diagrams	4.2.1 Part FBD
	4.2.2 System FBD
	4.2.3 Examples



	4.3 Rigid Body Equilibrium Equations

	4.4 Friction and Impending Motion

	4.5 Examples	Example 4.5.1: External Forces, submitted by Elliott Fraser
	Example 4.5.2: Free-Body Diagrams, submitted by Victoria Keefe
	Example 4.5.3: Friction, submitted by Deanna Malone
	Example 4.5.4: Friction, submitted by Dhruvil Kanani
	Example 4.5.5: Friction, submitted by Emma Christensen



	Chapter 5: Trusses

	5.1 Trusses Introduction	5.1.1 Two Force Members
	5.1.2 Trusses
	5.1.3 Parts of a Truss
	5.1.4 Tension & Compression



	5.2 Method of Joints

	5.3 Method of Sections

	5.4 Zero-Force Members

	5.5 Examples	Example 5.5.1: Method of Sections – Submitted by Riley Fitzpatrick
	Example 5.5.2: Zero-Force Members, submitted by Michael Oppong-Ampomah



	Chapter 6: Internal Forces

	6.1 Types of Internal Forces	6.1.1 Types of Internal Forces
	6.1.2 Sign Convention
	6.1.3 Calculating the Internal Forces



	6.2 Shear/Moment Diagrams	6.2.1 What are Shear/Moment Diagrams?
	6.2.2 Distributed Loads & Shear/Moment Diagrams
	6.2.3 Producing a Shear/Moment Diagram
	6.2.4 Tips & Plot Shapes



	6.3 Examples	Example 6.3.1: Internal Forces – Submitted by Emma Christensen
	Example 6.3.2: Shear/Moment Diagrams – Submitted by Deanna Malone



	Chapter 7: Inertia

	7.1 Center of Mass: Single Objects	7.1.1 Center of Mass of Two Particles
	7.1.2 Center of Mass in 2D & 3D
	7.1.3 The Center of Mass of a Thin Uniform Rod (Calculus Method)

	7.1.4 The Center of Mass of a Non-Uniform Rod



	7.2 Center of Mass: Composite Shapes	7.2.1 Centroid Tables
	7.2.2 Composite Shapes



	7.3 Types of Inertia

	7.4 Mass Moment of Inertia	7.4.1 Intro to Mass Moment of Inertia
	7.4.2 Inertia Table of Common Shapes
	7.4.3 Radius of Gyration



	7.5 Inertia Intro: Parallel Axis Theorem

	7.6 Examples	Example 7.6.1: All of Ch 7 – Submitted by William Craine
	Example 7.6.2 Inertia – Submitted by Luke McCarvill



	Appendix A: Included Open Textbooks






6.1 Types of Internal Forces



  
  When you make a cut in an object, similar to a fixed reaction, we describe what is happening at that point using one horizontal force (called normal force), one vertical force (called shear force), and a bending moment.

  
    
      [image: ]
    
    Adapted from source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/6_internal_forces/6-2_internal_forces_equilibrium/internal_forces_equilibrium.html

  

  6.1.1 Types of Internal Forces

  There are 3 types of internal forces (& moments):

  
    	normal force (N) – the horizontal force we calculated in trusses in the last chapter

    	shear force (V) – the vertical force that changes based on the applied loads

    	bending moment (M) – changes based on the applied loads and applied moments

  

  Normal force is represented by ‘N’. Shear force, the vertical force is represented with ‘V’. Bending moment is ‘M’. Normal and shear have units of N or lb and bending moment has units of Nm or ft-lb. The following table summarizes information on internal forces (and moments).

  	Force/Moment 	Abbreviation 	Unit 	Direction for a horizontal beam 
 	Normal Force 	N 	N or lb 	horizontal 
 	Shear Force 	V 	N or lb 	vertical 
 	Moment 	M 	Nm or ft-lb 	rotation 
  

  Note that for a vertical column, the normal force would be vertical. For this reason, the normal force is often called ‘axial’ as in: along the axis. The shear force for a column would be horizontal and is sometimes called ‘transverse’.

  This is for a 2d analysis of the beam assuming there is negligible loading in the third dimension.

  

  
    When a beam or frame is subjected to transverse loadings, the three possible internal forces that are developed are the normal or axial force, the shearing force, and the bending moment, as shown in sectionkof the cantilever of the figure below. To predict the behavior of structures, the magnitudes of these forces must be known. In this chapter, the student will learn how to determine the magnitude of the shearing force and bending moment at any section of a beam or frame and how to present the computed values in a graphical form, which is referred to as the “shearing force” and the “bending moment diagrams.” Bending moment and shearing force diagrams aid immeasurably during design, as they show the maximum bending moments and shearing forces needed for sizing structural members.

    
      [image: ]
    

    
      Normal Force
    

    The normal force at any section of a structure is defined as the algebraic sum of the axial forces acting on either side of the section.

    
      Shearing Force
    

    The shearing force (SF) is defined as the algebraic sum of all the transverse forces acting on either side of the section of a beam or a frame. The phrase “on either side” is important, as it implies that at any particular instance the shearing force can be obtained by summing up the transverse forces on the left side of the section or on the right side of the section.

    
      Bending Moment
    

    The bending moment (BM) is defined as the algebraic sum of all the forces’ moments acting on either side of the section of a beam or a frame.

    Source: Internal Forces in Beams and Frames, Libretexts. https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames

  

  

  In 3 dimensions, there are:

  
    	1 normal force (N)

    	2 shear forces (V1 & V2), and

    	3 bending moments (M1, M2, & T – torsion).

  

  
    
      [image: ]
    
    Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/6_internal_forces/6-2_internal_forces_equilibrium/internal_forces_equilibrium.html

  

  6.1.2 Sign Convention

  So that there is a standard within the industry, a sign convention is necessary so we agree on what is positive and what is negative. On the right for shear – up is positive. Notice that both of the following figures show the identical sign convention.

  
    [image: ]
    Positive sign convention adapted from source: https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames

  

  When you look at the beam as a whole (in the figure below), positive shear is right side down. When you cut into beam, for it to be in static equilibrium, the positive shear must then be up on the right to be equal and opposite of the overall motion.

  

  
    
      [image: ]
    

    

    
      Axial (Normal) Force
    

    An axial force is regarded as positive if it tends to tier the member at the section under consideration. Such a force is regarded as tensile, while the member is said to be subjected to axial tension. On the other hand, an axial force is considered negative if it tends to crush the member at the section being considered. Such force is regarded as compressive, while the member is said to be in axial compression.

    
      Shear Force
    

    A shear force that tends to move the left of the section upward or the right side of the section downward will be regarded as positive. Similarly, a shear force that has the tendency to move the left side of the section downward or the right side upward will be considered a negative shear force.

    
      Bending Moment
    

    A bending moment is considered positive if it tends to cause concavity upward (sagging). If the bending moment tends to cause concavity downward (hogging), it will be considered a negative bending moment.

    Source: Internal Forces in Beams and Frames, Libretexts. https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames

  

  6.1.3 Calculating the Internal Forces

  To solve the internal forces at a certain point along the beam,

  
    [image: ]
    Positive sign convention adapted from https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.04%3A_Internal_Forces_in_Beams_and_Frames

  

  

  
    	Find the external & reaction forces

    	Make a cut.

    	In a FBD of one side of the cut, add the internal forces (and moments) using the positive sign convention.

    	Use the equilibrium equations to solve for the unknown internal forces and moments.

  

  

  

  Example: For the following distributed load, a) what are reaction forces? b) what are the internal forces at the midpoint b) between reaction forces?

  
    [image: ]
    Adapted from: Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/6_internal_forces/6-3_axial_torque_diagrams/axial_torque_diagrams.html

  

  1. Solve external forces:

  
    [image: ]
    Adapted from: Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/6_internal_forces/6-3_axial_torque_diagrams/axial_torque_diagrams.html

  

  [latex]\sum F_{X}=A_{x}=0[/latex]
 [latex]\sum F_{y}=A_{y}+C-\omega L=0[/latex]
 [latex]\sum M_{A}=-(\omega L)\left(\frac{L}{2}\right)+d_{A B} C=0[/latex]
 $$C = \left(\frac{\omega L^2}{2d_{A B}}\right) = \frac{(100 \frac{lb}{ft} )*(7ft)^2}{2 * (4ft)} = 612.5 lb \text{ (+j direction)} $$
 $$A_y = \omega*L- C = (100 \frac{lb}{ft})*(7 ft) – 612.5 lb = 87.5 lb \text{ (+j direction) }$$
 $$\underline{A_x = 0 \qquad A_y = 87.5 \text{ (+j )} \qquad C = 612.5 lb \text{ (+j )} }$$

  
    [image: ]
  

  2. Make a cut at B.

  3. In a FBD of one side of the cut, add the internal forces (and moments) using the positive sign convention.

  
    [image: ]
  

  4. Use the equilibrium equations to solve for the unknown internal forces and moments.

  For just this portion, the force from intensity is: Fw = ( 100 lb/ft ) * ( 2 ft) = 200 lb and acts 1 ft from the left, so the moment due to intensity is: Mw = w * 2 ft * 1 ft = Fw * 1 ft = ( 100 lb/ft ) * ( 2 ft) * (1 ft) = 200 ft-lb

  $$\sum F_y = 87.5 lb – 200 lb – V = 0 \\ V = -112.5 lb \text{ (- indicates going up not down)} $$

  

  $$ \sum M_A = – (w * 2 ft) * (1 ft) – V * (2 ft) + M = 0 \\ M = (100 \frac{lb}{ft}) * 2 ft^2 + (-112.5 lb) * (2 ft) \\ M = 200 ft \cdot lb – 225 ft \cdot lb \\ M = -25 ft \cdot lb \text{ (- indicates going reverse direction)} $$

  

  $$\underline{N = 0 \qquad V = -112.5 lb \text{ (+j )} \qquad M = -25 ft \cdot lb \text{ (clockwise)} }$$

  

  
    
      Key Takeaways

    

    
      Basically: The internal forces (and moments) for a 2d beam are: shear, normal, and bending moment. There is a positive sign convention to use when making a cut along a beam to determine the forces inside: on the left: shear down, normal out, moment up.

      Application: A bridge that has different loads applied (from cars, trucks, lampposts, etc). Use this method to calculate the internal loads at a particular point of interest.

      Looking Ahead: In the next section, we’ll look at how to calculate the internal force across the whole beam, and display the results graphically.

    

  

  

  





  
  





3.3 Distributed Loads



  
  3.3.1 Intensity

  Distributed loads are a way to represent a force over a certain distance. Sometimes called intensity, given the variable:

  Intensity      w = F / d     [=] N/m, lb/ft

  While pressure is force over area (for 3d problems), intensity is force over distance (for 2d problems). It’s like a bunch of mattresses on the back of a truck. You can model it as 1 force acting at the center (an equivalent point load as in 3.3.2, or you can model it as intensity and divide the total force by the width of the truck bed (the distance that’s not visible in this image[1]).

  
    [image: ]
  

  

  
    A distributed load is any force where the point of application of the force is an area or a volume. This means that the “point of application” is not really a point at all. Though distributed loads are more difficult to analyze than point forces, distributed loads are quite common in real world systems so it is important to understand how to model them.

    Distributed loads can be broken down into surface forces and body forces. Surface forces are distributed forces where the point of application is an area (a surface on the body). Body forces are forces where the point of application is a volume (the force is exerted on all molecules throughout the body). Below are some examples of surface and body forces.

    
      [image: ]
    

    Distributed loads are represented as a field of vectors. This is drawn as a number of discrete vectors along a line, over a surface, or over a volume, that are connected with a line or a surface as shown below.

    
      [image: ]
    

    Though these representations show a discrete number of individual vectors, there is actually a magnitude and direction at all points along the line, surface, or body. The individual vectors represent a sampling of these magnitudes and directions.

    It is also important to realize that the magnitudes of distributed forces are given in force per unit distance, area, or volume. We must integrate the distributed load over its entire range to convert the force into the usual units of force.

    Analyzing Distributed Load:

    For analysis purposes in statics and dynamics, we will usually substitute in a single point force that is statically equivalent to the distributed load in the problem. This single point force is called the equivalent point load and it will cause the same accelerations or reaction forces as the distributed load while simplifying the math.

    Source: Engineering Mechanics, Jacob Moore et al., http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/4-4_distributed_forces/distributedforces.html

  

  An additional example:

  
    [image: ]This is a more complex example of a distributed load. This is a cartoon of an airplane with its wing covered in a combination of snow and ice. In a real world situation loads will not accommodate people for ease of calculation, you get what you get. In this case we could approximate this shape with two semi-circles on each end of the wing with a triangle (∇) in the middle. For more accuracy we could use a system similar to the trapezoidal rule.

    Source: ” Statics” by LibreTexts is licensed under CC BY-NC-SA . https://eng.libretexts.org/Bookshelves/Introduction_to_Engineering/EGR_1010%3A_Introduction_to_Engineering_for_Engineers_and_Scientists/14%3A_Fundamentals_of_Engineering/14.11%3A_Mechanics/14.11.01%3A_Statics

  

  3.3.2 Equivalent Point Load & Location

  Distributed loads can be modeled as a single point force that is located at the centroid of the object. You can use straight-forward algebra, or use integration for more complex shapes. Then you replace the distributed load with the single point load acting at x distance. See in the truck example:

  
    [image: ]
  

  There are two ways to calculate this, using integrals and using the area and centroid.

  
    An equivalent point load is a single point force that will have the same effect on a body as the original loading condition, which is usually a distributed load. The equivalent point load should always cause the same linear acceleration and angular acceleration as the original load it is equivalent to (or cause the same reaction forces if the body is constrained). Finding the equivalent point load for a distributed load often helps simplify the analysis of a system by removing the integrals from the equations of equilibrium or equations of motion in later analysis.

    
      [image: ]
    

    Finding the Equivalent Point Load

    When finding the equivalent point load we need to find the magnitude, direction, and point of application of a single force that is equivalent to the distributed load we are given. In this course we will only deal with distributed loads with a uniform direction, in which case the direction of the equivalent point load will match the uniform direction of the distributed load. This leaves the magnitude and the point of application to be found. There are two options available to find these values:

    
      	We can find the magnitude and the point of application of the equivalent point load via integration of the force functions.

      	We can use the area/volume and the centroid/center of volume of the area or volume under the force function.

    

    The first method is more flexible, allowing us to find the equivalent point load for any force function that we can make a mathematical formula for (assuming we have the skill in calculus to integrate that function). The second method is usually faster, assuming that we can look up the values for the area or volume under the force curve and the values for the centroid or center of volume for the area under the curve.

    Using Integration in 2D Surface Force Problems:

    Finding the equivalent point load via integration always begins by determining the mathematical formula that is the force function. The force function mathematically relates the magnitude of the force (F) to the position (x). In this case the force is acting along a single line, so the position can be entirely determined by knowing the x coordinate, but in later problems we may also need to relate the magnitude of the force to the y and z coordinates. In our example to the left, we can relate magnitude of the force to the position by stating that the magnitude of the force at any point in Newtons per meter is equal to the x position in meters plus one.

    
      [image: ]
    

    The magnitude of the equivalent point load will be equal to the area under the force function. This will be the integral of the force function over it’s entire length (in this case from x = 0 to x = 2).

    $$F_{eq}=\int_{xmin}^{xmax}F(x)dx$$

    Now that we have the magnitude of the equivalent point load such that it matches the magnitude of the original force, we need to adjust the position (xeq) such that it would cause the samemoment as the original distributed force. The moment of the distributed force will be the integral of the force function (F(x)) times the moment arm about the origin (x). The moment of the equivalent point load will be equal to the magnitude of the equivalent point load that we just found times the moment arm for the equivalent point load (xeq). If we set these two things equal to one another and then solve for the position of the equivalent point load (xeq) we are left with the following equation:

    $$x_{eq}=\frac{\int_{xmin}^{xmax}(F(x)\ast x)dx}{F_{eq}}$$

    Now that we have the magnitude, direction, and position of the equivalent point load, we can draw the point load in our original diagram. This point force can be used in place of the distributed force in further analysis.

    
      [image: ]
    

    Using the Area and Centroid in 2D Surface Force Problems:

    As an alternative to using integration, we can use the area under the force curve and the centroid of the area under the force curve to find the equivalent point load’s magnitude and point of application respectively.

    
      [image: ]
    

    The magnitude(Feq) of the equivalent point load will be equal to the area under the force function. We can find this area using calculus, but there are often easier geometry based ways of finding the area under the force function.

    The equivalent point load will also travel through centroid of the area under the force function. This allows us to find the value for xeq. The centroid for many common shapes can be looked up in tables, and the parallel axis theorem can be used to determine the centroid of more complex shapes (see the centroid page for more details).

    

    Source: Engineering Mechanics, Jacob Moore et al., http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/4-5_equivalent_point_load/equivalentpointload.html

  

  

  Here are the equations for some common shapes:

  
    [image: ]
  

  

  Example 1: Equivalent force and location:

  What is the resultant force and where does it act from the wall?

  
    
      [image: ]
    
    Source: http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/4-5_equivalent_point_load

  

  

  
    [image: ]
  

  See solution here using integration from Engineering Mechanics, Jacob Moore et al., http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/4-5_equivalent_point_load/pdf/EquivalentPointLoad_WorkedExample1.pdf

  

  
    Example 2 (note: 1 kip = 1000 lb):

    
      [image: ]
    

    Example 3:

    
      [image: ]
    

    Example 4:

    
      [image: ]
    

    

    Source: ” Equilibrium Structures, Support Reactions, Determinacy and Stability of Beams and Frames” by LibreTexts is licensed under CC BY-NC-ND . https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.03%3A_Equilibrium_Structures_Support_Reactions_Determinacy_and_Stability_of_Beams_and_Frames

  

  

  

  3.3.3 Composite Distributed Loads

  When there is a complicated shape, it can be easier to model it as more than 1 type of distributed load. You calculate each force separately and then use a weighted equation to find the total distance the force acts from a point that you select.

  [latex]\quad\quad\quad\quad\text{Using area: }\quad\quad\quad\quad\quad\quad\quad\quad\quad \text{Using Integrals:}\\ \quad\quad\quad\quad\bar{x}=\frac{\sum F_{i}x_i}{\sum F_i} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \bar{x}=\frac{\int x w(x) d x}{\int w(x) d x}[/latex]

  A bit bigger:

  
    [image: ]
  

  For the following complex shape, this is how you find the composite equivalent point force and location ([latex]\bar{x}[/latex]):

  
    [image: ]
  

  

  

  
    
      Key Takeaways

    

    
      Basically: Distributed loads are a way to model forces in 2d. F = w d  Sometimes called intensity, distributed loads have units of force over distance: N/m or lb/ft.

      Application: For a truck carrying a heavy uneven load, find where the center of the force is.

      Looking ahead: Distributed load helps to model uneven loads. We’ll see it again as we do beam analysis

    

  

  

  

  
    
      	Image of truck from: https://get.pxhere.com/photo/car-transport-truck-vehicle-market-mattress-full-load-small-business-rwanda-overload-pickup-truck-overfull-automobile-make-612534.jpg ↵


    

  

  





  
  





4.3 Rigid Body Equilibrium Equations


  
  We use the equilibrium equations to calculate any unknown forces & moments using the known forces and values, and the following equations:

  The particle equilibrium equations were covered in section 2.3. These are:

  $$
 \Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma F_{z}=0
 $$

  Now for a rigid body where forces are analyzed at different points on a body, we can take moments into account. There are 3 equations for 2d and 4 equations for 3d:

  Rigid Body-Two Dimensions
 $$
 \Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma M_{O}=0
 $$
 Rigid Body-Three Dimensions
 $$
 \begin{gathered}
 \Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma F_{z}=0 \\
 \Sigma M_{x^{\prime}}=0, \Sigma M_{y^{\prime}}=0, \Sigma M_{z^{\prime}}=0
 \end{gathered}
 $$

  Because these are static bodies, the right side of the equations equal 0. In dynamics, they will equal the mass times the acceleration for translation and rotation.

   

  
    For a rigid body in static equilibrium, that is a non-deformable body where forces are not concurrent, the sum of both the forces and the moments acting on the body must be equal to zero. The addition of moments (as opposed to particles where we only looked at the forces) adds another set of possible equilibrium equations, allowing us to solve for more unknowns as compared to particle problems.

    Moments, like forces, are vectors. This means that our vector equation needs to be broken down into scalar components before we can solve the equilibrium equations. In a two dimensional problem, the body can only have clockwise or counter clockwise rotation (corresponding to rotations about the z axis). This means that a rigid body in a two dimensional problem has three possible equilibrium equations; that is, the sum of force components in the x and y directions, and the moments about the z axis. The sum of each of these will be equal to zero.

    For a two dimensional problem, we break our one vector force equation into two scalar component equations.

    $$\sum\vec F=0\\\sum F_x=0\:\sum F_y=0$$

    The one moment vector equation becomes a single moment scalar equation.

    $$\sum\vec M=0\\\sum M_z=0$$

    If we look at a three dimensional problem we will increase the number of possible equilibrium equations to six. There are three equilibrium equations for force, where the sum of the components in the x, y, and z direction must be equal to zero. The body may also have moments about each of the three axes. The second set of three equilibrium equations states that the sum of the moment components about the x, y, and z axes must also be equal to zero.

    We break the forces into three component equations

    $$\sum\vec F=0\\\sum F_x=0\:\sum F_y=0\:\sum F_z=0$$

    We break the moments into three component equations

    $$\sum\vec M=0\\\sum M_x=0\:\sum M_y=0\:\sum M_z=0$$

    Finding the Equilibrium Equations:

    As with particles, the first step in finding the equilibrium equations is to draw a free body diagram of the body being analyzed. This diagram should show all the force vectors acting on the body. In the free body diagram, provide values for any of the known magnitudes, directions, and points of application for the force vectors and provide variable names for any unknowns (either magnitudes, directions, or distances).

    Next you will need to choose the x, y, z axes. These axes do need to be perpendicular to one another, but they do not necessarily have to be horizontal or vertical. If you choose coordinate axes that line up with some of your force vectors you will simplify later analysis.

    Once you have chosen axes, you need to break down all of the force vectors into components along the x, y and z directions (see the vectors page in Appendix 1 page for more details on this process). Your first equation will be the sum of the magnitudes of the components in the x direction being equal to zero, the second equation will be the sum of the magnitudes of the components in the y direction being equal to zero, and the third (if you have a 3D problem) will be the sum of the magnitudes in the z direction being equal to zero.

    Next you will need to come up with the the moment equations. To do this you will need to choose a point to take the moments about. Any point should work, but it is usually advantageous to choose a point that will decrease the number of unknowns in the equation. Remember that any force vector that travels through a given point will exert no moment about that point. To write out the moment equations simply sum the moments exerted by each force (adding in pure moments shown in the diagram) about the given point and the given axis (x, y, or z) and set that sum equal to zero. All moments will be about the z axis for two dimensional problems, though moments can be about x, y and z axes for three dimensional problems.

    Once you have your equilibrium equations, you can solve these formulas for unknowns. The number of unknowns that you will be able to solve for will again be the number or equations that you have.

     

    Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/equilibrium_equations_rigid_body.html

  

   

  Here is a visual example of using the equilibrium equations:

  
    [image: ]
    Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/4_statically_equivalent_systems/4-1_statically_equivalent_systems/images/equivalentexample.png

  

  If we only consider the y (vertical) direction, the 200 lbs pushing down on the beam must be balanced by the reaction forces pushing up. The two reaction forces are equivalent because the forces on top are balanced evenly between the reaction forces. If they are at different locations, we use the sum of the moments equation and the distances of the people to determine the size of the reaction forces.

  Example 1:

  
    

    The car below has a mass of 1500 lbs with the center of mass 4 ft behind the front wheels of the car. What are the normal forces on the front and the back wheels of the car?

    
      [image: ]
    

    
      [image: ]
    

     

    Source: Engineering Mechanics, Jacob Moore et al., http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/pdf/EquilibriumEquationsExtended_WorkedProblem1.pdf

  

   

  Example 2:

  
    While sitting in a chair, a person exerts the forces in the diagram below. Determine all forces acting on the chair at points A and B. (Assume A is frictionless and B is a rough surface).

    
      [image: ]
    

    
      [image: ]
    

    Source: Engineering Mechanics, Jacob Moore et al., http://mechanicsmap.psu.edu/websites/3_equilibrium_rigid_body/3-6_equilibrium_equations_rigid_body/pdf/EquilibriumEquationsExtended_WorkedProblem5.pdf

  

   

   

   

  
    
      Key Takeaways

    

    
      Basically: The equilibrium equations for rigid bodies are a way to determine unknown forces and moments using known forces and moments, separating the motion in 2 (or 3) directions for translation and rotation. Moments could be calculated because rigid bodies also consider shape and length.

      Application: Calculate the reaction forces from the combined weight of an object.

      Looking Ahead: This method will be used extensively in Ch 5 and 6.

    

  

   

  




  
  





5.3 Method of Sections


  
  The method of sections uses rigid body analysis to solve for a specific member or two. Instead of looking at each joint, you make a cut through the truss, turning the members along that line into internal forces (assume in tension). Then you solve the rigid body using the equilibrium equations for a rigid body: [latex]\sum F_x=0\;\sum F_y=0\;\sum M_z=0[/latex]

  The truss:

   

  
    
      [image: ]
    
    Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/5_structures/5-5_method_of_sections/methodofsections.html

  

  is split into two to solve for FE.

  
    
      [image: ]
    
    Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/5_structures/5-5_method_of_sections/methodofsections.html

  

  For this example, you could choose the right half or left half. For some problems, being strategic is necessary otherwise you need to make multiple cuts. In this problem you had to solve for the reaction forces first, but that isn’t always the case as you can sometimes just make the cut (see example 2 below).

   

  Here are more examples of how to make a cut and showing the naming convention:

  
     

    
      [image: ]
    

    
      [image: ]
    

     

    
      [image: ]
    

    Source: Internal Forces in Beams and Frames, Libretexts. https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.05%3A_Internal_Forces_in_Plane_Trusses

  

   

   

  Here is a detailed explanation:

  
    The method of sections is a process used to solve for the unknown forces acting on members of a truss. The method involves breaking the truss down into individual sections and analyzing each section as a separate rigid body. The method of sections is usually the fastest and easiest way to determine the unknown forces acting in a specific member of the truss.

    Using This Method:

    The process used in the method of sections is outlined below:

    
      	In the beginning it is usually useful to label the members in your truss. This will help you keep everything organized and consistent in later analysis. In this book, the members will be labeled with letters.[image: ]

      	Treating the entire truss structure as a rigid body, draw a free body diagram, write out the equilibrium equations, and solve for the external reacting forces acting on the truss structure. This analysis should not differ from the analysis of a single rigid body.[image: ]

      	Next you will imagine cutting your truss into two separate sections. The cut should travel through the member that you are trying to solve for the forces in, and should cut through as few members as possible (The cut does not need to be a straight line).[image: ]

      	Next you will draw a free body diagram for either one, or both sections that you created. Be sure to include all the forces acting on each section. 	Any external reaction or load forces that may be acting at the section.
	An internal force in each member that was cut when splitting the truss into sections. Remember that for a two force member, the force will be acting along the line between the two connection points on the member. We will also need to guess if it will be a tensile or a compressive force. An incorrect guess now though will simply lead to a negative solution later on. A common strategy then is to assume all forces are tensile, then later in the solution any positive forces will be tensile forces and any negative forces will be compressive forces.
	Label each force in the diagram. Include any known magnitudes and directions and provide variable names for each unknown.[image: ]



      	Write out the equilibrium equations for each section you drew a free body diagram of. These will be extended bodies, so you will need to write out the force and the moment equations. 	You will have three possible equations for each section, two force equations and one moment equation.$$\sum\vec F=0\; \; \sum\vec M=0\\\sum F_x=0\; \; \sum F_y=0\; \; \sum M_z=0$$



      	Finally, solve the equilibrium equations for the unknowns. You can do this algebraically, solving for one variable at a time, or you can use matrix equations to solve for everything at once. If you assumed that all forces were tensile earlier, remember that negative answers indicate compressive forces in the members.

    

    Source:Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/5_structures/5-5_method_of_sections/methodofsections.html

  

   

  Additional examples from the Engineering Mechanics webpage:

  
    Example 1:
  

  
    Find the forces acting on members BD and CE. Be sure to indicate if the forces are tensile or compressive.

    
      [image: ]
    

     

    
      [image: ]
    

    
      [image: ]
    

    
      [image: ]
    

    Source: Engineering Mechanics, Jacob Moore, et al. http://mechanicsmap.psu.edu/websites/5_structures/5-5_method_of_sections/pdf/MethodOfSections_WorkedExample1.pdf

  

   

  
    Example 2:
  

  
    Find the forces acting on members AC, BC, and BD of the truss. Be sure to indicate if the forces are tensile or compressive.

    
      [image: ]
    

     

     

    If we make a cut in the top section, we don’t need to solve for the reaction forces.

    
      [image: ]
    

    
      [image: ]
    

     

    Source: Engineering Mechanics, Jacob Moore, et al.  http://mechanicsmap.psu.edu/websites/5_structures/5-5_method_of_sections/pdf/MethodOfSections_WorkedExample2.pdf

  

   

  Even more examples are available at: https://eng.libretexts.org/Bookshelves/Civil_Engineering/Book%3A_Structural_Analysis_(Udoeyo)/01%3A_Chapters/1.05%3A_Internal_Forces_in_Plane_Trusses

   

  In summary:

  
    [image: ]
  

   

   

  
    
      Key Takeaways

    

    
      
        Basically: Method of sections is an analysis technique to find the forces in some members of a truss. It separates the truss into two sections then uses the rigid body equilibrium equations.

        Application: To calculate the loads on bridges and roofs, especially if you need to know only one or two of the members.

        Looking Ahead: The next section explores a trick that makes solving faster, especially for method of joints.

      

    

  

   

  




  
  





7.1 Center of Mass: Single Objects



  
  To start, let’s calculate the center of mass! This is a weighted function, similar to when we found the location of the resultant force from multiple distributed loads and forces.

  [latex]\bar{x}=\frac{m_1*x_1}{m_1+m_2}+\frac{m_2*x_2}{m_1+m_2}[/latex]

  When the density is the same throughout a shape, the center of mass is also the centroid (geometric center).

  
    7.1.1 Center of Mass of Two Particles
  

  
    Consider two particles, having one and the same mass m, each of which is at a different position on the x axis of a Cartesian coordinate system.

    
      [image: ]
    

    Common sense tells you that the average position of the material making up the two particles is midway between the two particles. Common sense is right. We give the name “center of mass” to the average position of the material making up a distribution, and the center of mass of a pair of same-mass particles is indeed midway between the two particles. How about if one of the particles is more massive than the other? One would expect the center of mass to be closer to the more massive particle, and again, one would be right. To determine the position of the center of mass of the distribution of matter in such a case, we compute a weighted sum of the positions of the particles in the distribution, where the weighting factor for a given particle is that fraction, of the total mass, that the particle’s own mass is. Thus, for two particles on the x axis, one of mass m1, at x1, and the other of mass m2, at x2,

    
      [image: ]
    

    the position x of the center of mass is given by equation 8-1:

    [latex]\bar{x}=\frac{m_1*x_1}{m_1+m_2}+\frac{m_2*x_2}{m_1+m_2}[/latex]

    

    Note that each weighting factor is a proper fraction and that the sum of the weighting factors is always 1. Also note that if, for instance, m1 is greater than m2, then the position x1 of particle 1 will count more in the sum, thus ensuring that the center of mass is found to be closer to the more massive particle (as we know it must be). Further note that if m1 = m2, each weighting factor is 1/2, as is evident when we substitute m for both m1 and m2 in equation 8-1:

    $$\bar{x}=\frac{m}{m+m}x_1+\frac{m}{m+m}x_2\\\bar{x}=\frac{1}{2}x_1+\frac{1}{2}x_2\\\bar{x}=\frac{x_1+x_2}{2}$$

    

    The center of mass is found to be midway between the two particles, right where common sense tells us it has to be.

    Source: Calculus-Based Physics 1, Jeffery W. Schnick. p142, https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7

  

  

  Below is a more visual representation of where the COM would be for two different weighing particles.

  
    [image: ]
    Source (image): Two_body_jacobi.svg: CWitte, from JPG by Brews oharederivative work: WillowW via Wikimedia Commons https://zh.wikipedia.org/wiki/File:Jacobi_coordinates.svg

  

  

  A second explanation:

  
    The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances. Applying this concept to the masses on the rod, we note that the masses balance each other if and only if m1d1 = m2d2.

    
      [image: ]
    

    This idea is not limited just to two point masses. In general, if 𝑛 masses, 𝑚1, 𝑚2,…,𝑚𝑛, are placed on a number line at points 𝑥1,𝑥2,…,𝑥𝑛, respectively, then the center of mass of the system is given by:

    $$ \bar x=\frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^nm_i}$$

    

    
      Example 1: 
    

    
      Suppose four point masses are placed on a number line as follows:
    

    
      	𝑚1=30𝑘𝑔, placed at 𝑥1=−2𝑚

      	𝑚2=5𝑘𝑔, placed at 𝑥2=3𝑚

      	𝑚3=10𝑘𝑔,placed at 𝑥3=6𝑚

      	𝑚4=15𝑘𝑔,placed at 𝑥4=−3𝑚.

    

    
      Solution
    

    Find the moment of the system with respect to the origin and find the center of mass of the system.

    First, we need to calculate the moment of the system (the top part of the fraction):

    [latex]M =\sum_{i=1}^4 m_i *x_i \\\qquad \quad = (30kg)*(-2m) + (5kg)*(3m)+(10kg)*(6m)+(15kg)*(-3m) \\\qquad\quad = (-60+15+60-45)kg*m \\\qquad\quad = -30 kg*m[/latex]

    

    Now, to find the center of mass, we need the total mass of the system:

    $$ m = \sum_{i=1}^4 m_i = (30+5+10+15) kg = 60kg $$

    

    Then we have [latex]\bar{x} = \frac{M}{m} = \frac{-30 kg*m}{60kg} = -0.5 m[/latex]

    

    The center of mass is located 1/2 m to the left of the origin.

    

    Source: “Moments and Centers of Mass” by LibreTexts, https://eng.libretexts.org/@go/page/67237

  

  7.1.2 Center of Mass in 2D & 3D

  When we are looking at multiple objects in 2D or 3D, we perform the center of mass equation multiple times in the x, y, and z directions.

  $$ \bar x=\frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^nm_i} \qquad \bar y=\frac{\sum_{i=1}^n m_i y_i}{\sum_{i=1}^nm_i} \qquad \bar z=\frac{\sum_{i=1}^n m_i z_i}{\sum_{i=1}^nm_i}$$

  

  
    In some sense, one can think about the center of mass of a single object as its “average position.” Let’s consider the simplest case of an “object” consisting of two tiny particles separated along the x-axis, as seen below:

    
      [image: ]
    

    If the two particles have equal mass, then it’s pretty clear that the “average position” of the two-particle system is halfway between them. If the masses of the two particles are different, would the “average position” still be halfway between them? Perhaps in some sense this is true, but we are not looking for ageometric center, we are looking for the average placement of mass. If m1has twice the mass of m2, then when it comes to the average placement of mass, m1gets “two votes.” With more of the mass concentrated at the position x1than at x2, the center of mass should be closer to x1than x2. We achieve the perfect balance by “weighting” the positions by the fraction of the total mass that is located there. Accordingly, we define as the center of mass:

    $$\bar x_{cm}=(\frac{m_1}{m_1+m_2})x_1+(\frac{m_2}{m_1+m_2})x_2=\frac{m_1x_1+m_2x_2}{M_{system}}$$

    If there are more than two particles, we simply add all of them into the sum in the numerator. To extend this definition of center of mass into three dimensions, we simply need to do the same things in the y and zdirections. A position vector for the center of mass of a system of many particles would then be:

    $$\vec{r}_{cm}=\bar x_{cm}\underline{\hat{i}}+\bar y_{cm}\underline{\hat{j}}+ \bar z_{cm}\underline{\hat{k}}\\=\frac{[m_1 x_1+m_2 x_2+…]}{M}\underline{\hat{i}}+\frac{[m_1y_1+m_2y_2+…]}{M}\underline{\hat{j}}+\frac{[m_1 z_1+m_2 z_2+…]}{M}\underline{\hat{k}}\\=\frac{m_1[x_1\underline{\hat{i}}+y_1\underline{\hat{j}}+z_1\underline{\hat{k}}]+m_2[x_2\underline{\hat{i}}+y_2\underline{\hat{j}}+z_2\underline{\hat{k}}]+…}{M}\\=\frac{m_1\vec r_1+m_2\vec r_2+…}{M}$$

    Source: ” Center of Mass” by Tom Weideman, https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_9A__Classical_Mechanics/4%3A_Linear_Momentum/4.2%3A_Center_of_Mass

  

  Example 2:

  
    
      Suppose three point masses are placed in the x-y plane as follows (assume coordinates are given in meters):
    

    
      	
        m1 = 2 kg placed at (-1, 3)m,
      

      	
        m2 = 6 kg placed at (1, 1)m, and
      

      	
        m3 = 4 kg placed at (2, -2)m.
      

    

    
      Find the center of mass of the system.
    

    Solution
 First we calculate the total mass of the system:

    $$ m = \sum_{i=1}^3 m_i = (2 + 6 + 4) kg = 12 kg $$

    Next we find the moments with respect to the x- and y- axes:

    [latex]M_x =\sum_{i=1}^3 m_i *x_i \\\qquad \quad = (2kg)*(-1m) + (6kg)*(1m)+(4kg)*(2m) \\\qquad\quad = (-2+6+8)kg*m \\\qquad\quad = 12 kg*m[/latex]

    [latex]M_y =\sum_{i=1}^3 m_i *y_i \\\qquad \quad = (2kg)*(3m) + (6kg)*(1m)+(4kg)*(-2m) \\\qquad\quad = (6+6-8)kg*m \\\qquad\quad = 4 kg*m[/latex]

    Then we have

    [latex]\bar{x} = \frac{M_x}{m} = \frac{12 kgm}{12m} = 1 m[/latex]

    [latex]\bar{y} = \frac{M_y}{m} = \frac{4 kgm}{12m} = 0.333 m[/latex]

    

    The center of mass of the system is: (1, 0.333)m.

    Source: “Moments and Centers of Mass” by LibreTexts, https://eng.libretexts.org/@go/page/67237

  

  
    7.1.3 The Center of Mass of a Thin Uniform Rod (Calculus Method)
 
  

  
    Quite often, when the finding of the position of the center of mass of a distribution of particles is called for, the distribution of particles is the set of particles making up a rigid body. The easiest rigid body for which to calculate the center of mass is the thin rod because it extends in only one dimension. (Here, we discuss an ideal thin rod. A physical thin rod must have some nonzero diameter. The ideal thin rod, however, is a good approximation to the physical thin rod as long as the diameter of the rod is small compared to its length.)

    In the simplest case, the calculation of the position of the center of mass is trivial. The simplest case involves a uniform thin rod. A uniform thin rod is one for which the linear mass density µ, the mass-per-length of the rod, has one and the same value at all points on the rod. The center of mass of a uniform rod is at the center of the rod. So, for instance, the center of mass of a uniform rod that extends along the x axis from x = 0 to x = L is at (L/2, 0).

    The linear mass densityµ, typically called linear density when the context is clear, is a measure of how closely packed the elementary particles making up the rod are. Where the linear density is high, the particles are close together.

    To picture what is meant by a non-uniform rod, a rod whose linear density is a function of position, imagine a thin rod made of an alloy consisting of lead and aluminum. Further imagine that the percentage of lead in the rod varies smoothly from 0% at one end of the rod to 100% at the other. The linear density of such a rod would be a function of the position along the length of the rod. A one-millimeter segment of the rod at one position would have a different mass than that of a one-millimeter segment of the rod at a different position.

    People with some exposure to calculus have an easier time understanding what linear density is than calculus-deprived individuals do because linear density is just the ratio of the amount of mass in a rod segment to the length of the segment, in the limit as the length of the segment goes to zero. Consider a rod that extends from 0 to L along the x axis. Now suppose that ms(x) is the mass of that segment of the rod extending from 0 to x where x ≥ 0 but x < L. Then, the linear density of the rod at any point x along the rod, is just dm8/dx evaluated at the value of x in question.

    
      [image: ]
    

    

    Source: Calculus-Based Physics 1, Jeffery W. Schnick. p143, https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7

  

  
    7.1.4 The Center of Mass of a Non-Uniform Rod
  

  
    Now that you have a good idea of what we mean by linear mass density, we are going to illustrate how one determines the position of the center of mass of a non-uniform thin rod by means of an example.

    
      Example 3:
    

    
      Find the position of the center of mass of a thin rod that extends from 0 to 0.890 m along the x axis of a Cartesian coordinate system and has a linear density given by µ = 0.650 kg/m3
    

    In order to be able to determine the position of the center of mass of a rod with a given length and a given linear density as a function of position, you first need to be able to find the mass of such a rod. To do that, one might be tempted to use a method that works only for the special case of a uniform rod, namely, to try using m = µL with L being the length of the rod. The problem with this is, that µ varies along the entire length of the rod. What value would one use for µ ? One might be tempted to evaluate the given µ at x = L and use that, but that would be acting as if the linear density were constant at µ = µ(L). It is not. In fact, in the case at hand, µ(L) is the maximum linear density of the rod, it only has that value at one point on the rod.

    Instead, using integration, we find the equation:

    [latex]m=\frac{bL^3}{3}[/latex]

    That can now be used to calculate the mass of a non-linear rod. The value of L is given as 0.890 m and we defined b to be the constant 0.650 kg/m3, therefore

    $$m=\frac{0.650\frac{kg}{m^3}(0.890m)^3}{3}\\m=0.1527kg$$

    That’s a value that will come in handy when we calculate the position of the center of mass.

    Now, when we calculated the center of mass of a set of discrete particles (where a discrete particle is one that is by itself, as opposed, for instance, to being part of a rigid body) we just carried out a weighted sum in which each term was the position of a particle times its weighting factor and the weighting factor was that fraction, of the total mass, represented by the mass of the particle. We carry out a similar procedure for a continuous distribution of mass such as that which makes up the rod in question.

    Once again, using integration, we find the equation:

    [latex]\bar{x}=\frac{bL^4}{4m}[/latex]

    Now we substitute variables with values; the mass m of the rod that we found earlier, the constant b that we defined to simplify the appearance of the linear density function, and the given length L of the rod:

    $$m= \frac{\left( 0.650\frac{kg}{m^3} \right) (0.890m)^4}{4(0.1527kg)}\\\bar{x}=0.668m$$

    This is our final answer for the position of the center of mass. Note that it is closer to the denser end of the rod, as we would expect.

    Source: Calculus-Based Physics 1, Jeffery W. Schnick. p144, https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7

  

  

  

  
    
      Key Takeaways

    

    
      Basically: When there are multiple objects, the center of mass is the location in the x, y, and z directions between the objects.

      Application: To calculate the acceleration or use F = ma, m is the total mass at the center of mass.

      Looking Ahead: The next section will look at how to calculate the center of mass for a complex object.

    

  

  





  
  





Chapter 4: Rigid Bodies


  
  This is arguably the most fundamental chapter for Statics. Learn these concepts and the next two chapters will make a lot of sense. Without this chapter, the next chapters will be much more confusing. When people talk about Statics, this chapter contains the concepts they are talking about. You will use free-body diagrams and the equilibrium equations in many other courses. Here are the sections in this Chapter:

  
    	
      
        	4.1 External Forces – Types of external forces

        	4.2 Rigid Body Free Body Diagrams – How to model problems to be able to solve them ** very important section

        	4.3 Rigid Body Equilibrium Equations – How to apply what you learned on particles to rigid bodies

        	4.4 Friction and Impending Motion – Special cases of an external force looking at slipping and tipping

        	4.5 Examples  – Examples from your peers

      

    

  

  Here are the important equations for this chapter.

  
    [image: ]
  

   

  






2.2 Free Body Diagrams for Particles


  
  A free-body diagram (FBD) helps you to simplify a complicated problem. The first thing to remember is the object should always be free which means, floating in space. You represent the floor or other surfaces with forces. You might have done these particle free body diagrams in your high school physics class, where all the forces act at the centre of the object. (This will be different for rigid bodies). 
 

  To draw a free-body diagram remember four points:

  
    	
      Add coordinate frame
      (which way is positive x and positive y?)
    

    	
      Replace surfaces with forces 
      (floor, hand, and objects touching it become arrows)
    

    	
      Point forces in the correct direction 
      (the head of the arrow points to where the force acts. FG acts down)
 
    

    	
      Use unique (different) names 
      (be sure to name each force with a different name).
 
    

  

  For a baseball being hit by a bat (and neglecting air), the force of gravity acts at the center, the force of the bat acts on the outside. Notice in the figure[1] the names FBat and FG are different in the figure below. Also – you can understand what they represent quickly. Also see the coordinate frame? You’ll be adding these in your sleep by the end of this class.

  
    [image: ]
  

  
    As you draw a free body diagram, there are a couple of things you need to keep in mind:

    (1) Include only those forces acting ON the object whose free body diagram you are drawing. Any force exerted BY the object on some other object belongs on the free body diagram of the other object.
 (2) All forces are contact forces and every force has an agent. The agent is “that which is exerting the force.” In other words, the agent is the life form or thing that is doing the pushing or pulling on the object. No agent can exert a force on an object without being in contact with the object.

    We are going to introduce the various kinds of forces by means of examples. Here is the first
 example:

    
      
        A rock is thrown up into the air by a person. Draw the free body diagram of the rock while it is up in the air. (Your free body diagram is applicable for any time after the rock leaves the thrower’s hand, until the last instant before the rock makes contact with whatever it is destined to hit.) Neglect any forces that might be exerted on the rock by the air.

      

      
        If you see the rock flying through the air, it may very well look to you like there is nothing touching the rock. But the earth’s gravitational field is everywhere in the vicinity of the earth. It can’t be blocked. It can’t be shielded. It is in the air, in the water, even in the dirt. It is in direct contact with everything in the vicinity of the earth. It exerts a force on every object near the surface of the earth. We call that force the gravitational force. You have already studied the gravitational force. We give a brief synopsis of it here.

         

        
          The Gravitational Force Exerted on Objects Near the Surface of the Earth.
        

        Because it has mass, the earth has a gravitational field. The gravitational field is a force-per-mass field. It is invisible. It is not matter. It is an infinite set of force-per-mass vectors, one at every point in space in the vicinity of the surface of the earth. Each force per-mass vector is directed downward, toward the center of the earth and, near the surface of the earth, has a magnitude of 9.81 N/kg.  The effect of the earth’s gravitational field is to exert a force on any object that is in the earth’s gravitational field. The force is called the gravitational force and is equal to the product of the mass of the object and the earth’s gravitational field vector: Fg=mg. Where g=9.81 N/kg is the magnitude of the earth’s gravitational field vector. The direction of the near-earth’s-surface gravitational force is downward, toward the center of the earth.

        Here is the free body diagram and the corresponding table of forces:

        
          [image: ]
        

        (1) The only thing touching the object while it is up in the air (neglecting the air itself) is the earth’s gravitational field. So there is only one force on the object, namely the gravitational force. The arrow representing the force vector is drawn so that the tail of the arrow is touching the object, and the arrow extends away from the object in the direction of the force.

        (2) Unless otherwise stipulated, label the diagram yourself however it makes most sense. Always draw a coordinate frame (Usually x is upwards, and y extends to the right).

        (3) There is no velocity information on a free body diagram

        (4) There is no force of the hand acting on the object because, at the instant in question, the hand is no longer touching the object. When you draw a free body diagram, only forces that are acting on the object at the instant depicted in the diagram are included. The acceleration of the object depends only on the currently-acting forces on the object. The force of the hand is of historical interest only.

        (5) Regarding the table of forces:
 a) Make sure that for any free body diagram you draw, you are capable of making a complete table of forces. You are not required to provide a table of forces with every free body diagram you draw, but you should expect to be called upon to create a table of forces more than once.
 b) In the table of forces, the agent is the life form or thing that is exerting the force and the victim is the object on which the force is being exerted. Make sure that, in every case,
 the victim is the object for which the free body diagram is being drawn.
 c) In the case at hand, there is only one force so there is only one entry in the table of forces.
 d) For any object near the surface of the earth, the agent of the gravitational force is the earth’s gravitational field. It is okay to abbreviate that to “Earth” because the gravitational field of the earth can be considered to be an invisible part of the earth, but it is NOT okay to call it “gravity.” Gravity is a subject heading corresponding to the kind of force the gravitational force is, gravity is not an agent

      

    

    
      
        A ball of mass m hangs at rest, suspended by a string. Draw the free body diagram for the ball, and create the corresponding table of forces.

      

      
        To do this problem, you need the following information about strings:

        The Force Exerted by a Taut String on an Object to Which it is Affixed (This also applies to ropes, cables, chains, and the like.)

        The force exerted by a string, on an object to which it is attached, is always directed away from the object, along the length of the string. Note that the force in question is exerted by the string, not for instance, by some person pulling on the other end of the string. The force exerted by a string on an object is referred to as a “tension force” and its magnitude is conventionally represented by the symbol FT.

        Note: There is no formula to tell you what the tension force is. If it is not given, the only way to get it is to use Newton’s 2nd Law.

        Here is the free body diagram of the ball, and the corresponding table of forces:

        
          [image: ]
        

      

    

    
      There is no “force of motion” acting on an object. Once you have the force or forces
      

      exerted on the object by everything that is touching the object, you have all the forces. Do not add a “force of motion” to your free body diagram. It is especially tempting to add this force when there are no actual forces in the direction in which an object is going. Keep in mind, however, that an object does not need a force on it to keep going in the direction in which it is going; moving along at a constant velocity is what an object does when there is no net force on it.
    

    Source: Calculus-Based Physics 1, Jeffery W. Schnick. https://openlibrary.ecampusontario.ca/catalogue/item/?id=ce74a181-ccde-491c-848d-05489ed182e7 page 86

  

   

  
    
      Key Takeaways

    

    
      Basically: Free-body diagrams (FBDs) give you a way to model complicated problem in a simple way. All exterior forces are modeled with an arrow.

      Application: A baseball can be modeled using a FBD to show how the bat and gravity affect the ball.

      Looking ahead: You’ll use a FBD in every step 2 in nearly every homework problem. These are especially helpful with Equilibrium Equations in the next section.

    

  

  

  
    
      	Original image of baseball from: https://openclipart.org/detail/258473/baseball-refixed Annotations added by the author ↵


    

  

  




  
  





1.3 Vectors



  
  1.3.1 Vector Components

  Some fun facts about vectors:

  
    	The vector is denoted with a line on top or bottom: [latex]\vec A[/latex] or A.

    	There are two parts of a vector ([latex]\vec A[/latex]): magnitude (A or |A|) and direction ([latex]\underline{\hat{a}}[/latex]): [latex]\vec A = |\underline{A}|*\underline{\hat{a}}[/latex]

    	In 2-dimensions, there are two components: x and y. In 3-d, there are three components: x, y, and z.

    	Vectors can be denoted using Cartesian form or brackets: [latex]\vec A=A_x\underline{\hat{i}}+A_y\underline{\hat{j}}+A_z\underline{\hat{k}}[/latex] or using the bracket form horizontally: [latex]\vec A=[ A_x, A_y, A_z[/latex] ] or vertically: [latex]\vec A=\begin{bmatrix}A_x\\A_y,\\A_z \end{bmatrix}[/latex]

    	The magnitude (A or |A|) is calculated using the Pythagorean theorem for each component in 2d: [latex]A = \sqrt{{A}_{x}^{2}+{A}_{y}^{2}}[/latex] and 3d: [latex]A = \sqrt{{A}_{x}^{2}+{A}_{y}^{2}+{A}_{z}^{2}}[/latex]

    	The unit vector ([latex]\underline{\hat{u}}[/latex]) represents the direction in cartesian form [latex]\underline{\hat{u}}=\underline{\hat{i}}+\underline{\hat{j}}+\underline{\hat{k}}[/latex] or using bracket form: [ [latex]\underline{\hat{i}}, \underline{\hat{j}}, \underline{\hat{k}}[/latex] ].

    	The magnitude of the unit vector is 1 (denoted by the ‘hat’ on top) and it is unit-less: [latex]|\underline{\hat{u}} |= \sqrt{{\underline{\hat{i}}}^{2}+{\underline{\hat{j}}}^{2}+{\underline{\hat{k}}}^{2}} = 1[/latex]

    	The unit vector can be calculated from the magnitude and vector: [latex]\underline{\hat{a}} =\vec A/|A|[/latex]

  

  

  
    In 2d & 3d:

    
      [image: Vector A has horizontal x component A sub x equal to magnitude A sub x I hat and vertical y component A sub y equal to magnitude A sub y j hat. Vector A and the components form a right triangle with sides length magnitude A sub x and magnitude A sub y and hypotenuse magnitude A equal to the square root of A sub x squared plus A sub y squared. The angle between the horizontal side A sub x and the hypotenuse A is theta sub A.]
    

    

    
      [image: Vector A in the x y z coordinate system extends from the origin. Vector A equals the sum of vectors A sub x, A sub y and A sub z. Vector A sub x is the x component along the x axis and has length A sub x I hat. Vector A sub y is the y component along the y axis and has length A sub y j hat. Vector A sub z is the z component along the z axis and has length A sub x k hat. The components form the sides of a rectangular box with sides length A sub x, A sub y, and A sub z.]
    

    

    Source: University Physics Volume 1, OpenStax CNX, https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/2-2-coordinate-systems-and-components-of-a-vector/

    

  

  1.3.2 Componentizing a Vector

  
    [image: ]
    Source: Introductory Physics, Ryan Martin et al., https://openlibrary.ecampusontario.ca/catalogue/item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb p814

  

  In 2d:

  To find the components of a vector (A) in 2 dimensions (the x and y portions Ax and Ay), use SOH CAH TOA:

  

  
    
      
        [latex]\vec A=A_x\underline{\hat{i}}+A_y\underline{\hat{j}}[/latex]

        Ax = |A| cos(Θ)

        Ay = |A| sin(Θ) 

        |A|2 = Ax2 + Ay2 (magnitude)

        tan(Θ) = Ax / Ay (direction)

        
          
          

        

        In 3d:

        [latex]\vec A=A_x\underline{\hat{i}}+A_y\underline{\hat{j}}+A_z\underline{\hat{k}}[/latex]

        |A|2 = Ax2 + Ay2+ Az2  (magnitude)

        [latex]\begin{aligned} &\hat{a}=\frac{\vec A}{|\vec A|} \end{aligned}=\frac{{A}_{x} \underline{\hat{\imath}}+A_{y} \underline{\hat{\jmath}}+{A}_{z} \underline{\hat{k}}}{\sqrt{\left({A}_{x}\right)^{2}+\left({A}_{y}\right)^{2}+\left({A}_{z}\right)^{2}}}[/latex]

      

    

  

  1.3.3 Position Vector

  The position vector describes the position of an object or person from a predefined origin (a starting point, absolute 0, or some other point), for example the point where A in the above image is point at. A is the position vector. You can add individual position vectors to find the total position traveled (c = a + b), for example if someone walks from one point on campus to another, they would rarely walk in one straight line like c. In the image below, imagine that there is a building in the square near where a and b meet, so the person couldn’t take c but had to walk around. The total distance traveled is |a| + |b|, not |c| (because |c| ≠ |a| + |b|).

  
    
    
      
        
          
            [image: ]
            Source: Introductory Physics, Ryan Martin et al., https://openlibrary.ecampusontario.ca/catalogue/item/?id=4c3c2c75-0029-4c9e-967f-41f178bebbbb page 821

          

        

      

    

  

  
    
      
        Subtraction works the same way, but instead of going from tail to head of the arrow, the reverse direction is taken, from head to tail. For example, a = c –b, follow c from tail to head, then go in the reverse direction of b from head to tail, and you end up at a.

      

    

  

  1.3.4 Vector Math

  Here’s more official language to describe vectors:

  
    Vectors can be added together and multiplied by scalars. Vector addition is associative and commutative, and vector multiplication by a sum of scalars is distributive. Also, scalar multiplication by a sum of vectors is distributive:

    [latex]\alpha(\vec A+\vec B)=\alpha\vec A +\alpha\vec B[/latex]

    In this equation,α is any number (a scalar). For example, a vector antiparallel to vector [latex]\vec A=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}[/latex] can be expressed simply by multiplying[latex]\vec A[/latex] by the scalar α=1:

    [latex]-\vec A=-A_x\hat{i}-A_y\hat{j}-A_z\hat{k}[/latex]

    The generalization of the number zero to vector algebra is called thenull vector, denoted by [latex]\vec 0[/latex]. All components of the null vector are zero [latex]\vec 0 = 0 \hat{i} + 0 \hat{j} + 0 \hat{k}[/latex] , so the null vector has no length and no direction.

    Two vectors [latex]\vec A[/latex]and [latex]\vec B[/latex]areequal vectorsif and only if their difference is the null vector:

    [latex]\vec 0=\vec A - \vec B=(A_x\underline{\hat{i}}) + A_y\underline{\hat{j}} + A_z\underline{\hat{k}}) - (B_x\underline{\hat{i}} + B_y\underline{\hat{j}} + B_z\underline{\hat{k}})[/latex]

    [latex]\space=(A_x - B_x)\underline{\hat{i}} + (A_y - B_y)\underline{\hat{j}} + (A_z - B_z)\underline{\hat{k}}[/latex]

    This vector equation means we must have simultaneously [latex]A_x-B_x=0[/latex], [latex]A_y-B_y=0[/latex], and [latex]A_z-B_z=0[/latex]. Hence, we can write [latex]\vec A=\vec B[/latex] if and only if the corresponding components of vectors[latex]\vec A[/latex] and [latex]\vec B[/latex] are equal:

    [latex]\vec A =\vec B[/latex] if  [latex]\begin{bmatrix}A_x=B_x\\A_y=B_y\\A_z=B_z\end{bmatrix}[/latex]

    Two vectors are equal when their corresponding scalar components are equal.

    Resolving vectors into their scalar components (i.e., finding their scalar components) and expressing them analytically in vector component form allows us to use vector algebra to find sums or differences of many vectors analytically (i.e., using graphical methods). For example, to find the resultant of two vectors [latex]\vec A[/latex] and [latex]\vec B[/latex], we simply add them component by component, as follows:

    [latex]\vec R=\vec A + \vec B=(A_x\underline{\hat{i}}+A_y\underline{\hat{j}}+A_z\underline{\hat{k}})+(B_x\underline{\hat{i}}+B_y\underline{\hat{j}}+B_z\underline{\hat{k}})=(A_x+B_x)\underline{\hat{i}}+(A_y+B_y)\underline{\hat{j}}+(A_z+B_z)\underline{\hat{k}}[/latex]

    In this way, scalar components of the resultant vector: [latex]\vec R=(R_x\underline{\hat{i}}+R_y\underline{\hat{j}}+R_z\underline{\hat{k}})[/latex].

    [latex]\begin{matrix}R_x = A_x+B_x\\R_y = A_y+B_y\\R_z = A_z+B_z\end{matrix}[/latex]

    
    Source: University Physics Volume 1, OpenStax CNX, https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/2-3-algebra-of-vectors/

  

  
    [image: ]
  

  
    
      Key Takeaways

    

    
      Basically: Vectors help describe position, forces, and quantities. Vectors use components, magnitude, and direction (unit vector) to do so.

      Application: A hammock hangs at an angle from the wall. When a person is in the hammock, they are pulling on the wall with a force at an angle. This force vector could be componentized into x and y, using the angle and the weight of the person to calculate it.

      Looking ahead: The next place vectors will appear is in Moments in 1.6.

    

  

  







  
  



